

BUSINESS AVIATION FACTS

- ◆ Business aircraft have access to almost 5,300 public-use airports in the United States, compared to the 558 served by the scheduled air carriers. (page 27)
- ◆ Approximately 70 percent of all airline passengers travel to or from the top 30 air carrier hubs. (page 27)
- ◆ General aviation accounts for less than 8 percent of the total traffic at the top 30 major hub-carrier airports in the country. (page 29)
- ◆ Civil aviation contributed more than \$900 billion and 11.3 million jobs to the U.S. economy in the year 2000, at least 9 percent of the U.S. GDP of \$9.9 trillion. (DRI-WEFA, Campbell-Hill, 2002, page 16)
- Corporate/executive and business aircraft operators have compiled the best safety records of any segment of general aviation. (NTSB/Breiling Associates, 2003; page 31)
- ◆ Corporate/executive aviation has one of the safest records in all widely used forms of transportation, including the scheduled airlines. (page 30)
- ◆ The number of companies operating business aircraft in the United States has grown more than 50 percent from 6,584 companies operating 9,504 business aircraft in 1991 to 10,191 companies operating 15,569 aircraft in 2002. (AvDataInc., 2003; page 21)
- ◆ During 2002, 13,958 operators flew 22,576 turbinepowered business aircraft worldwide. (AvDataInc., 2003; page 21)
- ◆ More than 75 percent of the operators (10,502) and 72 percent of the aircraft (16,319) were located in North America. (AvDataInc., 2003; page 21)
- ◆ Air charter activity in the United States increased by 30 percent in 2001. (*Air Charter Guide*, 2003; page 26)
- ◆ From 2000 to 2002, the number of companies and individuals using fractional ownership grew by 52 percent, from 3,834 to 5,827 shares. (AvDataInc., 2003; page 26)
- ◆ Of company employees traveling on board business aircraft, only 14 percent were top management. (Louis Harris Poll, 1997; page 4)

- ◆ Of the remaining 86 percent of passengers using business aircraft, 14 percent were senior managers, 49 percent were middle managers and 19 percent were professional staff. (Louis Harris Poll, 1997; page 4)
- ◆ Business aircraft passengers felt they were significantly more productive aboard business aircraft than they would be even in their own offices. (Louis Harris Poll, 1997; page 4)
- ◆ A closer examination of 32 S&P 500 companies commencing business aircraft operations after 1995's brief economic slowdown revealed that, on a return to shareholder basis, new business aircraft operators returned 343 percent to their shareholders between 1995 and 1999, versus 177 percent for non-operators. (page 17)
- ◆ Among S&P 500 company peer groups from 1992 through 1999, business aircraft operators earned 146 percent more in cumulative returns than nonoperators. (Business Aviation in Today's Economy, 2001; page 17)
- ◆ Interviews of CFOs and other financial executives of the S&P 500 peer groups found a strong correlation between the benefits of business aircraft and success drivers. (page 17)
- ◆ A 2001 study concluded that "use of business aircraft can and does contribute directly to shareholder value by improving performance at every level." (page 18)
- ◆ NBAA represents the interests of more than 7,300 Member Companies that own, operate, or support over 9,300 general aviation aircraft used as an aid to the conduct of their business. (page 5)
- ◆ NBAA Member Companies employ 19 million people worldwide and earn annual revenues of approximately \$5 trillion a figure that is more than half of the U.S. gross domestic product. (page 5)
- ◆ The number of NBAA Member Companies has more than doubled since 1990. The Membership has grown from 6,355 companies in 2000 to 7,306 at the end of 2002, a growth of 15 percent. (page 12)
- ◆ NBAA Member Companies spend over \$11 billion annually on commercial airline tickets. (page 13)

TABLE OF CONTENTS SECTION 1 - BUSINESS AVIATION AND NBAA SECTION 4 - BUSINESS AVIATION INDUSTRY STATISTICS Business Aviation and Taxes30 LABACE9 SECTION 5 - CONGRESSIONAL DIRECTORY SECTION 2 - NBAA MEMBER STATISTICS NBAA-Government Interaction and Congressional Oversight U.S. Senate: Committee and Subcommittee Chairs and U.S. House of Representatives: Committee and SECTION 3 - BUSINESS AVIATION AND ECONOMIC VITALITY U.S. Senate Member Listing40 U.S. House of Representatives Member Listing41 CHARTS, GRAPHS AND TABLES SECTION 1 - BUSINESS AVIATION AND NBAA U.S. Turbine Fixed-Wing Fleet by Type, 200223 U.S.-Operated Fixed-Wing Turbine Business Aircraft by Passenger Activity Aboard Aircraft4 Passenger Productivity Aboard Aircraft4 New Business Jet Deliveries Worldwide, 1987-200224 2002 NBAA Flying Safety Awards6 New Business Turboprop Deliveries Worldwide, 1987-200224 NBAA Annual Meeting & Convention Attendance, 1993-2003 . . . 8 2002 Sales of New Turbine-Powered Aircraft to Business Aircraft Operators by Manufacturer25 SECTION 2 - NBAA MEMBER STATISTICS Total Number of Fractional Shares, 1986–200225 Number of Charter Aircraft by Category in NBAA Member Companies by U.S. State/Possession, 2002 12 Number of Charter Aircraft by Category Outside Top 50 U.S. Airports Based on Itinerant General Percent of Companies Flying to Selected International Regions . .15 SECTION 3 - BUSINESS AVIATION AND ECONOMIC VITALITY Top 30 U.S. Air Carrier Large Hub Airports in 200228 Total General Aviation Hours Flown by Primary Use S&P 500: General Aviation Active Aircraft by Primary Use Fortune 500 Industrials: Active General Aviation and Air Taxi Hours Flown, 2002 Corporate/Executive Aircraft Accidents32 Aircraft Noise Comparisons, Business Jets vs. General Aviation Aircraft Fuel Consumption34 Fortune 500 2001 Fleet by Type of Aircraft19 Total Jet Fuel & Aviation Gasoline Consumption. SECTION 4 - BUSINESS AVIATION INDUSTRY STATISTICS U.S. Companies Operating Fixed-Wing Turbine Business Aircraft and Number of Aircraft, 1991-200220 Worldwide Fixed-Wing Turbine Business Aircraft Fleet Worldwide Business Jet Fleet, 1987–200222 Total Combined Aircraft Operations at Airports with FAA Worldwide Business Turboprop Fleet, 1987–200222 Average Age of Worldwide Business Aircraft by Type23

Business Aviation and NBAA

What Is Business Aviation?

General aviation includes all aircraft not flown by the airlines or the military. Business aviation, one of the most important segments of general aviation, consists of companies and individuals using aircraft as tools in the conduct of their business.

Business aircraft are utilized by all types of people and companies, from individuals who often fly rented, single-engine, piston-powered airplanes, to sales or management teams from the largest multinational corporations, many of which own fleets of multiengine, turbine-powered aircraft and employ their own flightcrews, maintenance technicians and other aviation support personnel.

Many large companies use business aircraft to transport personnel and priority cargo to a variety of farflung company or customer locations, including sites overseas. Often business aircraft are used to bring customers to company facilities for factory tours and product demonstrations. Companies and individuals, such as salespeople and doctors, use business aircraft to cover regional territories within several hundred miles of their home bases. While the overwhelming majority of business aircraft missions are conducted on demand, some companies have scheduled operations, known as corporate shuttles, which essentially are in-house airlines. Most corporations that operate business aircraft use modern, multi-engine, turbinepowered jets, turboprops or turbine helicopters that are certified to the highest applicable transport-category standards. Aircraft built specifically for business use vary from four-seat, short-range, piston-powered airplanes to two- and three-engine corporate jets that can carry up to 19 passengers nearly 7,000 miles nonstop. Some companies even use airline-type jets. Helicopters also are often used for business transportation.

Business aircraft operated by companies usually are flown by two-person, professionally trained crews whose primary, if not exclusive, responsibility is to fly company aircraft. Some smaller operators of business aircraft, especially business people who pilot their own aircraft, typically use one pilot to fly piston-powered machines.

Although the majority of business aircraft are owned by individuals or companies, businesses also utilize business aviation through arrangements such as chartering, leasing, fractional ownership, time-sharing agreements, interchange agreements, partnerships and aircraft management contracts.

Business aircraft generally are not flown for hire. Thus, the majority of U.S.-registered business aircraft are governed by Part 91 of the Federal Aviation Regulations (FARs). Most U.S.-registered business aircraft that can be flown for compensation are regulated by FAR Part 135, which covers on-demand commercial operations. Regardless of how business aircraft are utilized, companies choose them because they provide safe, efficient, flexible and reliable transportation.

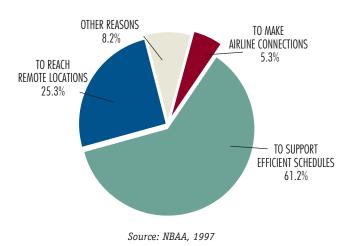
Business vs. Corporate Aircraft

The terms business aircraft and corporate aircraft often are used interchangeably because they both refer to an aircraft used to support a business enterprise. The terms are generic and do not refer to specific NBAA Membership categories.

The FAA defines business transportation as "any use of an aircraft (not for compensation or hire) by an individual for transportation required by the business in which the individual is engaged." The FAA defines corporate/executive transportation as "any use of an aircraft by a corporation, company or other organization (not for compensation or hire) for the purposes of transporting its employees and/or property, and employing professional pilots for the operation of the aircraft."

Why Business Aircraft?

Of all the benefits of business aircraft, increased productivity of personnel is probably the most important. Companies that fly general aviation aircraft for business purposes can control virtually all aspects of their travel plans. Itineraries can be changed instantly, and business aircraft can be flown to thousands more destinations than are served by the scheduled airlines.


Business aircraft are engineered and built to the highest standards, and companies that maintain their own aircraft have complete control over the readiness of their fleets.

Business aircraft are productivity multipliers that allow passengers to conduct business enroute in complete privacy while reducing the stresses associated with travelling on commercial carriers. And in recent years, business aircraft have compiled an impressive safety record that is comparable to that of the major airlines. Benefits of business aircraft include:

- 1. Saving Employee Time. Efficient employee scheduling and employee time savings are key advantages of business aircraft use. Because business aircraft have the ability to fly nonstop between small close-in airports, highly efficient employee time management becomes a very real benefit.
- Increasing Productivity Enroute. Employee
 productivity sustained enroute to a business
 destination in a secure office environment,
 free from interruptions, distractions or eavesdropping can have substantial value to an
 employer, including strategizing before meetings
 and debriefing afterwards or meeting with
 customers enroute.
- 3. Minimizing Nonbusiness Hours Away from Home. "Family time" before and after traditional business hours is critical to most employees and can have an acute effect on employee morale and productivity. Business aircraft allow flexible scheduling and quick and easy access to meeting locations, thereby minimizing time away from home and office.

4. **Ensuring Industrial Security**. Avoiding eavesdropping, reducing travel visibility, eliminating unwanted and unnecessary conversations and interruptions, all support the use of business aircraft to safeguard company employees and the sensitive information they carry.

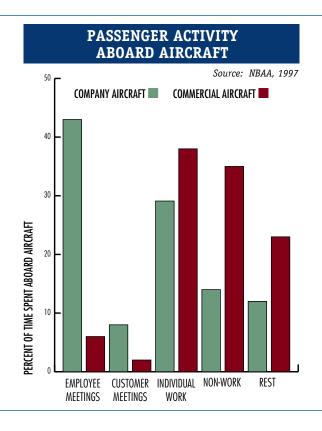
REASONS FOR USING BUSINESS AIRCRAFT

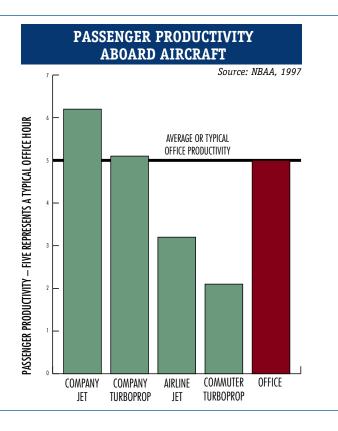
- 5. Maximizing Personal Safety and Peace of Mind. Turbine-powered business aircraft flown by two-person professional crews have a safety record comparable to that of the largest scheduled airlines. The peace of mind that results
 - from complete company control over the aircraft flown, passenger and baggage manifests, pilot quality and training, aircraft maintenance, and operational safety standards is substantial.
- 6. Exercising Management Control Over
 Efficient, Reliable Scheduling. The near-total scheduling flexibility inherent in business air-craft even changing itineraries enroute can be a powerful asset. As aircraft can arrive and depart on the passengers' schedule, typically waiting for them in the ordinary course of business, meetings can be moved up, back, or extended without penalty, risk or unnecessary scheduling pressures. Overnight trips often can be avoided.
- 7. **Projecting a Positive Corporate Image**. For customers particularly, and often for vendors, the arrival and departure of company employees via business aircraft is the sign of

Business Aviation and NBAA

a well-run company, signaling the progressive nature of an organization with a keen interest in efficient time management and high levels of productivity. If used for charitable purposes, significant public-service contributions, as well as possible public relations benefits, also can be realized.

Charging the Entrepreneurial Spirit. By minimizing or eliminating many of the barriers to travel, business aircraft allow business opportunities to be more readily considered and acted upon.


Business cultures and their strategies change as markets, facilities and customers in other, often-rural areas of the country – once practically unreachable and thus unconsidered – are newly accessible.


Superior Productivity and Efficiency

A 1997 survey of chief pilots and business aircraft passengers conducted by Louis Harris & Associates, Inc. showed that over 60 percent of those surveyed use business aircraft to support efficient schedules and more than 25 percent use them to reach remote locations not served by any scheduled airline.

In addition, of the company employees traveling on board business aircraft, only 14 percent were top management. Of the remaining 86 percent of passengers using business aircraft, 14 percent were senior managers, 49 percent were middle managers and 19 percent were professional staff.

As for productivity and efficiency, according to the survey, passengers felt they were significantly more productive aboard business aircraft than they would be even in their own offices.

Productive collaboration among company employees aboard business aircraft occurred nearly eight times as often as when those same employees were aboard commercial aircraft. Productive collaboration with customers occurred nearly seven times more often than on commercial aircraft. Furthermore, employees aboard commercial aircraft were nearly three times more likely to be resting or reading nonwork-related materials.

Clearly, the environment aboard a business aircraft facilitates substantially higher productivity enroute for its passengers.

NBAA's Role in Business Aviation

The National Business Aviation Association (NBAA), established in 1947, has served the business aviation community for over 50 years and is dedicated to enhancing the safety, efficiency and acceptance of business aviation. The Association fosters an environment in which general aviation aircraft flown in support of commerce are recognized as important business tools that contribute to economic growth.

NBAA represents the interests of more than 7,300 Member Companies that own, operate, or support over 9,300 general aviation aircraft used as an aid to the conduct of business. NBAA Member Companies employ 19 million people worldwide and earn annual revenues of approximately \$5 trillion – a figure that is more than half of the U.S. gross domestic product.

For nearly six decades, NBAA has been the primary representative of business aviation before Federal, state and local government. The interests and views of the business aviation community are conveyed to Congress, the Executive Branch, regulatory agencies (such as the Federal Aviation Administration, Transportation Security Administration, Internal Revenue Service and others), and state and local authorities by the NBAA Government & Public Affairs Department in conjunction with the NBAA Operations Department.

Through its Operations Department and Standing Committees, composed of Staff and Member Company Representatives, NBAA also participates in major aviation industry forums that evaluate air traffic procedures, aviation weather, air navigation, charting, airspace access, hazards to aviation, aeronautical frequency use, aircraft equipment specifications and performance standards.

Another duty of the NBAA Operations Department is to support the daily flying activities of Member Companies by providing technical expertise and up-to-date information on safety, air traffic, noise, maintenance, airports, international travel and other important issues and regulations that affect the use of Member Company aircraft.

Information is conveyed directly by NBAA Staff through a variety of publications, including the NBAA Update, NBAA Journal of Business Aviation Management, NBAA Journal of Business Aviation Safety, Alert Bulletins and the Association web site at www.nbaa.org.

NBAA also offers Seminars that focus on specific job functions of corporate flight departments. Tapping into the expertise of the NBAA Operations and Government & Public Affairs Staffs, as well as that of NBAA Standing Committee Members and industry experts, the Association explores topics ranging from safety to taxes to management. NBAA Standing Committees include the following:

- O Airports/Heliports
- Airspace/Air Traffic
- Associate Member Advisory Council (a forum for nonvoting Members that provide business aviation products or services)
- O Corporate Aviation Management
- O FAR Part 135
- Flight Attendants
- O Government Affairs
- International Operators
- O Local Business Aviation Organization
- Maintenance
- Operations
- Safety
- Schedulers & Dispatchers
- O Tax
- Technical

Business Aviation and NBAA

In addition, in September of 2002, NBAA created a Security Council to maintain and protect airspace and airport access in today's environment of heightened security, to establish and communicate business aviation security best practices and to ensure the safety and security of business aviation aircraft and passengers.

As a result of the increasingly global nature of business, and therefore business aviation, NBAA's involvement extends beyond the United States to address emerging issues that transcend national boundaries. Along with other national business aviation organizations that are members of the International Business Aviation Council, Ltd. (IBAC), NBAA acts as a business aviation liaison to the International Civil Aviation Organization (ICAO) and other international aviation groups.

Safety First

Maintaining the highest level of flight safety is the top priority of NBAA. The Association has actively promoted safety and professionalism among its Members for over five decades through various programs, publications and awards.

In addition, the Association's Safety Committee further promotes and enhances NBAA's safety efforts on behalf of business aviation.

Each year the Association recognizes superior operational performance on the part of Member Company flightcrews and maintenance and support personnel through its Flying Safety Awards Program, which was established in 1953 and is sanctioned by the National Safety Council.

2002 NBAA FLYING SAFETY AWARDS

Each year, NBAA recognizes the extraordinary business flying safety records compiled by NBAA Member Companies and their pilots, maintenance and support personnel. The cumulative records for the year ending December 31, 2001, are as follows:

50 Year Safe Flying Achievement Award goes to Members that have achieved the safety milestone of flying for 50 years or more without an aviation accident. In 2002, four companies received this award.

Corporate Business Flying Safety Award goes to Member Companies whose aircraft have flown in excess of three or more consecutive accident-free years. Some 283 corporations were cited for 8,996,245 cumulative hours of safe operations during 2001.

Commercial Business Flying Safety Award is given to Member Companies whose aircraft have flown in excess of three or more consecutive accident-free years in a nonscheduled, revenue-producing capacity. Receiving the award in 2002 for 2001 performance were 9 companies that compiled 249,929 hours.

Pilot Safety Award is presented to Member Companies' pilots who have flown business aircraft in excess of 1,500 accident-free hours. There were 692 recipients whose totals added up to 5,404,741 hours during 2001.

Aviation Maintenance Department Safety Award goes to Member Companies that qualify for a Corporate or Commercial Safety Award and perform their own maintenance. Receiving the award in 2002 were 60 companies.

Maintenance/Avionics Technician Safety Award is given to Member Companies' technicians who have been employed three or more years in support of safe corporate/business flight operations. In 2002, 450 individuals received this award.

Aviation Support Services Safety Award goes to Member Company support services personnel who have been employed three or more years in support of safe corporate/business flight operations. In 2002, 371 individuals received this award.

The awards are acknowledged during the following year's NBAA Annual Meeting & Convention.

The 2002 Corporate Business Flying Safety Awards, based upon 2001 results, were presented to 283 Corporate Member Companies, recognizing their accident-free operations for three or more consecutive years. These companies flew a total of about nine million accident-free hours. In addition, four companies achieved the safety milestone of flying for 50 years or more without an aviation accident.

Commercial Business Flying Safety Awards were given to nine companies in recognition of accident-free flight operations for three or more consecutive years of nonscheduled revenue flying. Together, these companies amassed nearly 250,000 hours of accident-free flying.

For 2001, 692 individual flightcrew members earned Pilot Safety Awards, each reflecting more than 1,500 hours of accidentfree flying while piloting NBAA Member Company aircraft. These pilots have collectively amassed nearly 5.4 million accident-free hours.

Aviation Maintenance Department Safety Awards were presented to 60 Member Companies that performed their own aircraft maintenance and achieved an outstanding safety record for three or more consecutive years. Such awards acknowledge the vital role that conscientious aircraft maintenance technicians play in safe flying.

Maintenance/Avionics Technician Safety Awards were given to 450 maintenance specialists of Member Companies who have worked for three or more years without a job-related accident.

For 2001, 371 individuals from Member Companies earned Aviation Support Services Safety Awards. These awards recognize three or more years of accident-free operations on the part of maintenance support specialists who provide service to business aircraft operators.

Among the safety-related publications produced by NBAA is the Business Aviation Safety Journal, an annual publication devoted exclusively to safety. Other important Association publications that provide safety information include NBAA Update. a weekly subscription-based e-mail newsletter and the Business Aviation Management Journal.

Who Are NBAA's Members?

The Association's constituency consists of Corporate, Business and Associate Members and Affiliates.

Corporate Members are defined as any commercial or industrial enterprise engaged in business,

> commerce, trade or industry that owns or operates U.S.-registered aircraft, primarily not for hire, as an aid to the conduct of its business. Additionally, Corporate

Members must:

- 1. own or operate a multi-engine or turbinepowered aircraft;
- 2. certify that an operations manual and maintenance program are employed:
- 3. fly each multi-engine aircraft with two professional pilots employed directly or through a contract/lessor operator when pas-

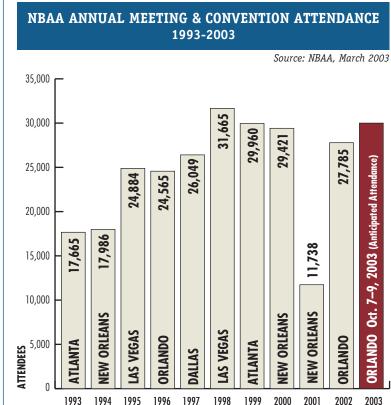
sengers are aboard. One pilot must have a valid air transport rating, and the other pilot must have at least a valid commercial license and a valid instrument rating;

- 4. certify that each pilot and/or crew member undergoes recurrent training and a proficiency check at least once per year;
- 5. have less than 50 percent of corporate sales, including that of all subsidiaries and affiliates, from products or services sold to business aviation clients.

Business Aviation and NBAA

Business Members, like Corporate Members, are defined as any commercial or industrial enterprise engaged in business, commerce, trade or industry that owns or operates U.S.-registered aircraft, primarily not for hire, as an aid to the conduct of its business. However, the following criteria distinguish Business Members from Corporate Members. Business Members must:

- not otherwise qualify for Corporate Membership
- use pilot(s) who have a currently valid commercial license and a currently valid instrument rating
- certify that each pilot and/or crew member undergoes a proficiency check at least once per year
- 4. achieve less than 50 percent of corporate sales from business aviation clients.


NBAA Corporate Members are typically firms with flight departments staffed by personnel whose primary jobs are associated with the management, operation and maintenance of company aircraft. Business Members are more commonly smaller firms or entrepreneurs. Only Corporate and Business Members are voting Members of the Association.

An NBAA Associate Member is any commercial or industrial enterprise that derives 50 percent or more of its dollar volume from the field of business aviation or owns or operates aircraft that are not flown by pilots meeting the criteria set forth for Corporate

or Business Members. Associate Members include airframe, engine and avionics manufacturers or other companies associated with manufacturing, sales, service and support of business or corporate aircraft.

Companies that own or operate aircraft not registered in the United States – such as a business jet operator in

a Pacific Rim nation – are eligible to join NBAA as Affiliates.

NBAA Annual Meeting & Convention

NBAA's Annual Meeting & Convention is the largest exhibition of purely civil aviation products and services in the world.

The large number of Attendees, Exhibitors and aircraft on display at the Convention reflects business aviation's importance as a transportation resource. This event is part of the Association's ongoing commitment to provide information that enhances the safety, efficiency and acceptance of business aviation.

At the NBAA 55th Annual Meeting & Convention, held September 10 to 12, 2002, in Orlando, 27,785 Attendees viewed the products and services of a record 1,011 Exhibiting Companies occupying approximately 900,000 square feet of exhibit space at the Orange County Convention Center in Orlando.

In addition, NBAA hosted 152 aircraft on Static Display at Orlando Executive Airport, including a record six aircraft that had never before been displayed at a show.

Assisting in the success of the NBAA Annual Meeting & Convention is the NBAA Local Committee, which is selected annually from the host location. In addition, NBAA has an Exhibitor Advisory Subcommittee to the Associate Member Advisory Council. The Subcommitee provides information, advice and guidance to ensure that the NBAA Annual Meeting & Convention is the foremost showcase in the world for business aviation products and services.

The NBAA 56th Annual Meeting & Convention will be held from October 7 to 9, 2003, at the Orange County Convention Center in Orlando, FL. For more information, visit www.nbaa.org/conventions.

EBACE

In 2002, NBAA and the European Business

Aviation Association (EBAA) jointly sponsored EBACE2002, the 2nd Annual European Business Aviation Convention & Exhibition, the only European event of its kind to focus totally on business aviation.

EBACE2002, held May 28 through 30, 2002, registered 4,824 Attendees – an increase of more than 30 percent over the 2001 total – and featured 219 Exhibitors occupying 533 three-meter by three-meter booth spaces in Palexpo Conference Center. In addition, 36 aircraft were featured on the Static Display of Aircraft on Geneva International Airport, an increase of 16 percent over the previous year. Attendees of this inaugural event included business aircraft operators, policymakers, regulators, opinion leaders, members of the media and technology leaders in the European business aviation industry.

EBACE2003 will be held May 7 to 9, 2003, and EBACE2004 will be held May 25 to 27, 2004,

both in Geneva, Switzerland. For more information, visit www.ebace.com.

LABACE

In 2002 and early 2003, NBAA participated in the

planning and debut of the Latin American Business Aviation Conference & Exhibition (LABACE), the first Latin American exhibition of its kind to focus totally on business aviation. Sponsored jointly by NBAA and the Associação Brasileira de Aviação Geral (ABAG), LABACE is positioned to become the most efficient annual gathering of Latin American business aviation buyers and sellers.

LABACE2003 will be held March 13 to 15, 2003, in São Paulo, Brazil. As of press time, the event is scheduled to feature approximately 2,500 Attendees from the Latin American business aviation community, more than 80 Exhibitors at the Transamérica Expo Center and 16 aircraft on Static Display at Congonhas Airport. For more information, visit www.labace.org.

Seminar Series

The NBAA Seminar Series provides forums for analysis and discussion of a wide variety of topics for all flight department personnel. Seminar topics include aviation safety and security, leadership issues, international and domestic operations, flight department management, flightcrew scheduling, aircraft dispatch policies, maintenance management,

flight attendant issues,

Business Aviation and NBAA

tax issues, flight operation and maintenance manuals, professional development and business aviation human factors. NBAA offers its Seminars at lower prices than those of comparable industry events in order to make them accessible to all within the business aviation community; some of these events are even unique within the industry.

At NBAA Seminars, business aircraft operators exchange information and perspectives on their daily operational, technical, legal and regulatory issues. Industry experts, NBAA Committee Members and NBAA Professional Staff provide the latest information and expertise, helping Attendees to operate their aircraft with optimum safety, efficiency and affordability. NBAA Seminars address current industry trends and issues as well as basic hands-on information for the successful day-to-day operation of the corporate flight department.

For more information about NBAA Seminars, visit www.nbaa.org/seminars.

Business Aviation Forum & Static Display

In June 2002, NBAA introduced the Business Aviation Forum & Static Display to address the needs of local business aviation communities across the United States. These Forums bring a given region's corporate aviation operators and vendors together for learning, networking and business opportunities. Each day-long Forum features indoor vendor stations, aircraft on static display, informational sessions and briefings by NBAA Staff and key local officials. In 2002, NBAA held regional Forums in the Chicago and Dallas/Fort Worth areas, and at press time, 2003 events were planned for Southern California and the New York City metropolitan area.

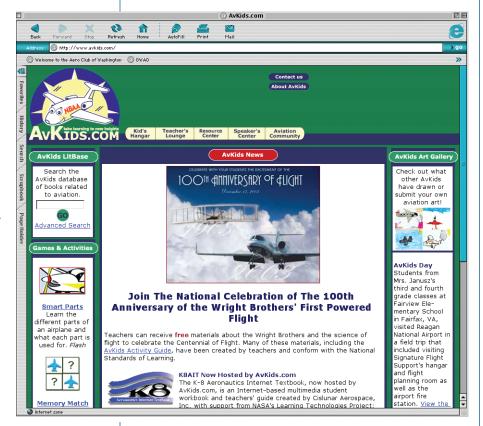
NBAA's Web Site: NBAA.org

NBAA's web site at **www.nbaa.org** was launched in 1995 at the 48th Annual Meeting & Convention. Since that time, the web site has grown to include nearly 40,000 documents, becoming the best single source of information for business aircraft operators.

The average number of visits per day to NBAA's web site is more than double the average number of phone calls made per day to NBAA Headquarters. More than 15,000 employees with NBAA Member Companies have passwords to access Member-only documents.

The Flight Department Operations section of NBAA's web site at **www.nbaa.org/ops** provides a wealth of resources for business aircraft operators. There is guidance in the areas of safety, security, flight department administration, finance, tax, maintenance, airport issues, airspace issues, international operations and more.

The web site's "Contact Congress" area at www.nbaa.org/congress includes detailed information about Congressional representatives, including contact information, a list of their key staff members and their voting record on aviation issues. Members can use the site to communicate directly with their Federal elected officials.


NBAA Air Mail at www.nbaa.org/airmail is a series of electronic mailing lists, or user groups, created for the collaboration and discussion of topics important to business aircraft operators. Any e-mail message sent to an Air Mail list address is broadcast to everyone on that list. Through Air Mail, NBAA Members can communicate their concerns, questions and insights to fellow Members on any topic relevant to the group. With more than 7,000 subscribers

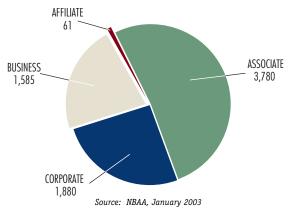
and over 30,000 messages posted since its launch in February 1997, Air Mail is NBAA's most popular online resource.

In November 2001, NBAA launched NBAA Update, a free weekly e-mail newsletter for Members and Non-Members that provides a synopsis of the latest operational, regulatory and political news for the business aviation community, as well as information about the Association and its upcoming events. As of March 2003, NBAA Update had more than 15,000 subscribers. NBAA Update archives are available for review at www.nbaa.org/update.

AvKids.com

The upcoming Centennial of Flight offers great opportunities to teach students about business aviation. NBAA's AvKids.com web site is the heart of the Association's AvKids (Aviation for Kids) Program, an effort designed to educate elementary school students about the benefits of business aviation to the community and the career opportunities available to them in the business aviation industry. The site contains challenging, fun activities for children and free resources for teachers and those interested in making career-day presentations at elementary schools. For more information, visit www.avkids.com.

NBAA Member Statistics

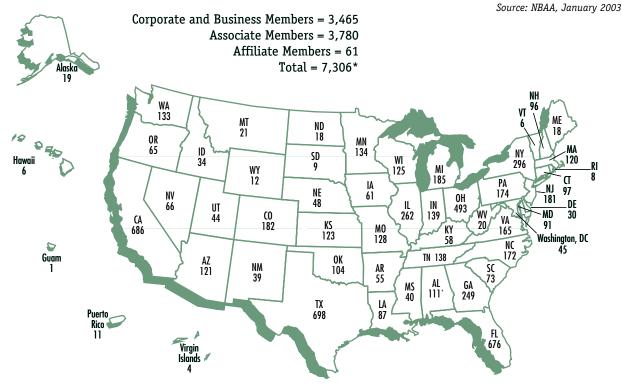

The Diversity of NBAA Members

NBAA represents the interests of more than 7,300 Member Companies that own, operate or support over 9,300 aircraft used in the conduct of their business.

The number of NBAA Member Companies has more than doubled since 1990. The Membership has grown over the past three years from 6,355 Member Companies in 2000 to 7,306 at the end of 2002, a growth of 15 percent.

About one third of NBAA's Members are manufacturing firms. Another third are service-sector enterprises, such as banks, insurance companies and realestate developers. Other industry groups with significant Membership representation include mining and construction, transportation, utilities, communications and wholesale/retail trade sectors.

NBAA MEMBER COMPANIES BY CATEGORY Total = 7,306*



*Total includes internationally based NBAA Members

NBAA represents a spectrum of flight departments, from single-aircraft operators to large corporations that fly sizable fleets of business aircraft.

The average number of aircraft per Operating Member Company is 2.03. Of those companies operating two aircraft, the average number of flight department employees is 6.4. Almost two-thirds of NBAA Member Companies operate one aircraft and employ an average

NBAA MEMBER COMPANIES BY U.S. STATE/POSSESSION, 2002

of 3.5 flight department personnel. In fact, one quarter of NBAA's Membership is composed of smaller firms with comparatively regional air travel requirements.

NBAA Corporate Members – typically companies with flight departments staffed by personnel whose primary jobs are the management, operation and maintenance of company aircraft – constitute approximately 26 percent of the NBAA Membership.

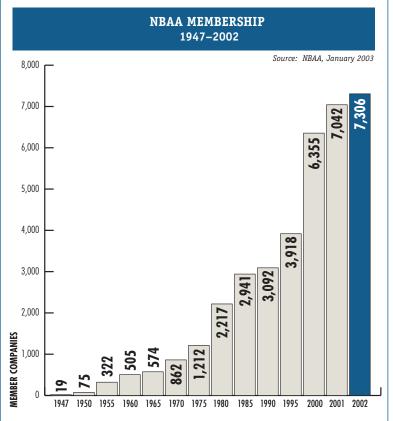
As of January 2003, there were 1,880 Corporate Members and 1,585 Business Members in NBAA. Combined, Business and Corporate Members, which comprise the voting Membership of NBAA, constitute nearly 50 percent of the total Membership.

Associate Members – those firms that support business flying, including airframe, engine and avionics manufacturers – comprise nearly 50 percent of the Membership. A total of 3,780 companies asso-

ciated with manufacturing, sales, service and support of business aircraft or related components and services were NBAA Associate Members as of January 2003. NBAA's Associate Members operate more than 3,800 aircraft, which represents approximately 40 percent of the NBAA fleet.

The smallest segment of the NBAA constituency is composed of companies that own or operate aircraft not registered in the United States. There were 61 such Affiliate Companies as of January 2003.

NBAA Member Companies are located in all 50 states, with more than 40 percent concentrated in Texas


(698), California (686), Florida (676), Ohio (493) New York (296) and Illinois (262). South Dakota (9), Rhode Island (8), Hawaii (6) and Vermont (6) are the states with the fewest Members.

NBAA Members and Airline Use

While NBAA Member Companies are among the world's

most active operators of business aircraft, they also are significant users of scheduled airlines.

A survey conducted by the Association indicates that NBAA Member Companies spend over \$11 billion annually on commercial airline tickets. Combined with aviation fuel taxes paid at the pump, airline ticket purchases by NBAA Member Companies contribute over \$1.2 billion in taxes annually to the Aviation Trust Fund.

The NBAA Fleet

Of the 9,352 aircraft operated by NBAA Members, jets weighing 29,999 pounds or less are the most popular. These 3,285 light and medium jets constitute 35 percent of the NBAA fleet.

Among the jets 29,999 pounds and under, the Cessna Citation and the Learjet series are the most prevalent among NBAA Member Companies. Another current manufacturer of business jets 29,999 pounds and under is Wichita, KS-based Raytheon Aircraft Company, which produces Hawkers and Beechjets.

The second largest group of NBAA Member aircraft is jet aircraft weighing 30,000 pounds or more.

NBAA Member Statistics

Members operate 1,886 of these larger business jets, which make up 20 percent of the NBAA fleet. Popular "heavy iron" business jets currently are being built by Gulfstream; France's Dassault, which produces Falcon jets; and Canadian manufacturer Bombardier, which makes the Challenger and Global Express.

A few of the NBAA Member jets weighing 30,000 pounds or more are airline-type aircraft made by Boeing and Airbus.

NBAA Members operate 1,981 turboprop airplanes, 929 of which are under 12,500 pounds and 1,052 of which are 12,499 pounds or more. Lighter turboprops constitute 10 percent of the NBAA fleet, while heavier turboprops constitute 11 percent of the NBAA fleet.

The overwhelming majority of the turboprop aircraft operated by NBAA Members are Beech King Airs, which are manufactured by Raytheon. Makers of lighter, multi-engine turboprops include Cessna, Piaggio and Piper.

An increasing number of heavy turboprops entering the NBAA fleet are being produced by regional-airline aircraft manufacturers such as Embraer of Brazil and Canada's Bombardier.

In recent years, a new kind of jetprop, the singleengine turboprop, which is being produced by

NBAA MEMBER AIRCRAFT BY WEIGHT AND TYPE Total = 9,352RECIPS. SINGLE ENGINE RECIPS. UNDER 6,000 LBS. JETS OVER 30,000 LBS. RECIPS. 6,000-9,000 LBS. 362 RECIPS. OVER 9,000 LBS HELICOPTERS UNDER 12,500 LBS. HELICOPTERS OVER 12,499 LBS. JETS UNDER 29,999 LBS. 3,285 TURBOPROPS UNDER 12,500 LBS. TURBOPROPS OVER 12,499 LBS. Source: NBAA, January 2003

Cessna, Pilatus, Piper and Socata, is gaining popularity among business aircraft operators.

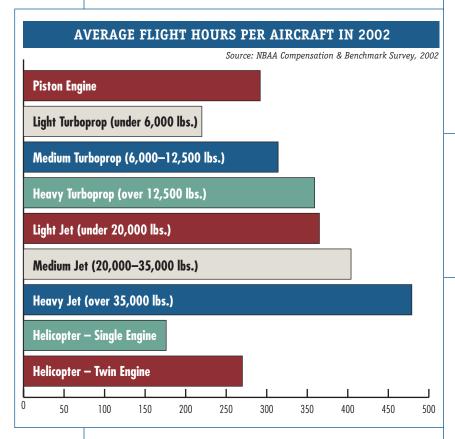
Some 597 helicopters are in service with NBAA Member Companies. These rotary wing aircraft account for approximately 6 percent of the NBAA fleet. Of these, only seven are helicopters that weigh 12,499 pounds or more.

Leading turbine-powered helicopter manufacturers include Texas-based Bell Helicopter Textron, Connecticut-based Sikorsky Aircraft and Eurocopter, a joint French-German firm.

NBAA Member Companies operate a total of 1,603 piston-powered (recip) aircraft, which constitute approximately 17 percent of the fleet. Nearly 50 percent of these are single-engine models; the others are multi-engine models. Virtually all of these reciprocating engine aircraft were produced in the United States by Raytheon, Cessna, or Piper.

NBAA Aircraft Utilization

Based on statistics compiled from the 2002 NBAA Compensation & Benchmark Survey, utilization of jet airplanes averaged 425 hours in 2001. The number of hours flown by each piston-powered aircraft averaged 292 hours. The number of hours flown by each turboprop aircraft averaged 328. The number of hours flown annually by each helicopter averaged 216 in 2002. Flight departments responding to the survey operated an average of 2.2 aircraft. More than 64 percent of respondents operate one or more jet aircraft. Of the 33 percent of companies that also chartered aircraft, they chartered on average 64 hours per year.


A significant number of Members also use their aircraft to transport customers and suppliers. Often sales presentations or product introductions are given to customers while they fly aboard business airplanes. Business aircraft also can be used to bring customers to the point of sale (i.e. to a factory or

a distribution center). To facilitate the conduct of business, many aircraft are equipped with phones, facsimile machines, computers with Internet access and audio-visual equipment.

Business has become global in nature. As trade barriers and political obstacles to conducting commerce overseas have fallen, NBAA Member Companies have been utilizing their aircraft to help them enter and expand international markets. More than 83 percent of NBAA Members responding to the survey say they fly outside the United States an average of 151.6 hours per year, and that activity is expected to continue.

Of operators that conduct international flights, more than 87 percent flew to Canada and over 62 percent flew to the Caribbean or Central America. More than 60 percent also flew to Mexico. Other prominent destinations included Europe (41.4 percent), South America (21.7 percent), the Pacific (17.7 percent), Asia (14.5 percent), the Middle East (10.7 percent) and Africa (8.8 percent).

Details of this survey, including other information on NBAA Member flight operations, are available in the 2002 NBAA Compensation & Benchmark Survey.

Business Aviation and Economic Vitality

Catalyst for Economic Growth

A recent study by DRI-WEFA, Inc., in collaboration with The Campbell-Hill Aviation Group, Inc., noted that over the last century, civil aviation has become an integral part of the U.S. economy, a key catalyst for economic growth and a profound influence on the quality of life in the United States. Civil aviation today touches nearly every aspect of our lives, and its success will, to a great degree, shape American society and the American economy over the next century.

The findings of this study can be summarized briefly as follows:

- O Civil aviation contributed more than \$900 billion and 11.3 million jobs to the U.S economy in the year 2000, at least 9 percent of the total U.S. GDP of \$9.9 trillion; of this, one dollar in nine is contributed by general aviation.
- Aggressive investment in air transportation infrastructure would reduce projected 2012 passenger delays by 64 million hours or 25 percent. Critically, every dollar of investment would generate as much as \$5 in ecomonic benefits to the U.S. economy.

 As a result, business operations would become more efficient, costs would be reduced and U.S. international competitiveness would increase, particularly in aviation (including air cargo) and in tourism, increasing economic development.

In seeking to reduce costs, businesses are finding alternative ways to "stay in touch" with their customers by using technology instead of flying.

Conferencing via the Internet, video, and telephone allow virtual contact with customers and suppliers.

Some corporations even choose to consolidate satellite offices geographically to minimize travel expense.

Within civil aviation, business aircraft are now used more often, especially by sales and management teams from large corporations. Among the benefits of owning their own fleets and hiring their own flightcrews, maintenance technicians and other support personnel, corporations and individual businessmen see the following:

- O Time-saving, through fewer unscheduled delays
- Increased productivity, as employees can work in complete privacy

U.S. Civil Aviation Impacts, 2000 (\$Billion and Thousand Employees)

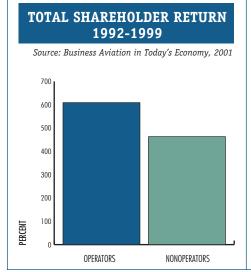
Source: DRI-WEFA, Inc., July 2002 **Total Impact** GDP % GDP Employment Commercial Aviation 437.1 4.4% 5,345 Expenditure Related to Commercial Aviation 364.9 3.7% 4,619 Commericial Aviation Total 802.0 8.1% 9,964 General Aviation 40.7 0.4% 511 Expenditure Related to General Aviation 61.3 0.6% 773 General Aviation Total 102.0 1.0% 1,284 **Grand Total** 903.5 9.2% 11,248

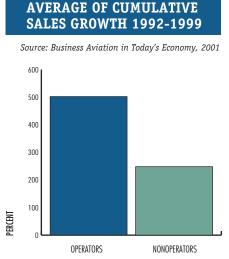
Note: In 2000, total U.S. GDP was \$9,873 billion. Due to rounding, totals and subtotals may not add precisely.

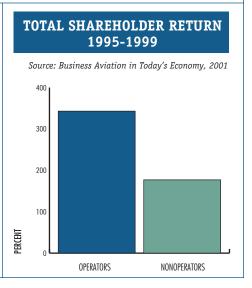
- O Control of all aspects of the travel plan
- Accessibility to more remote destinations than airlines
- O Full control of fleets and maintenance
- O Enhanced company image.

Planes = Gains

Business aircraft are productive tools that help companies grow faster and become more profitable.


That fact was confirmed by a study titled *Business Aviation in Today's Economy*, which was conducted in 2000–2001. Using financial data from the Standard & Poors 500, the study suggested that among S&P 500 company peer groups from 1992 through 1999, operators earned 146 percent more in cumulative returns than non-operators (609 percent versus 463 percent). According to the CFOs interviewed, aircraft help improve performance in the areas of greatest importance (e.g., identifying and executing strategic opportunities for new relationships/alliances; reaching critical meetings and closing transactions; expanding into new markets; and increasing contact with customers).


Operators also outperform non-operators by a sizeable margin in the growth of both EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) and EBIT (Earnings Before Interest and Taxes). Increased productivity (as a result of resource deployment, process improvement, and knowledge sharing/integration) was strongly correlated to earnings growth among the study's participants.


A closer examination of 32 S&P 500 companies commencing business aircraft operations after 1995's brief economic slowdown revealed that, on a return to shareholder basis, new business aircraft operators returned 343 percent to their shareholders between 1995 and 1999, versus 177 percent for non-operators. Moreover, the new operator group, which lagged behind non-operator return on equity (ROE) growth prior to 1995, surpassed non-operators thereafter, increasing ROE by 3.6 percent overall.

Interviews of CFOs and other financial executives of the S&P 500 peer groups found a strong correlation between benefits and success drivers. Senior executives in operator organizations can visit hundreds of locations (their own facilities or those of customers/suppliers) in a year because of the flexibility inherent in being able to control aircraft schedules and routes. In some cases, executives said they visit four or five sites in one day, reviewing operations, efficiency, quality and customer service. Also, the use of employee shuttles can help a company save

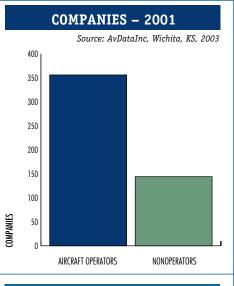
S&P 500

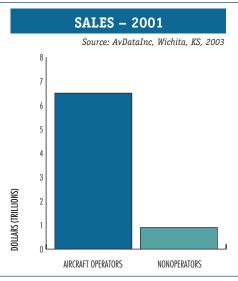
Business Aviation and Economic Vitality

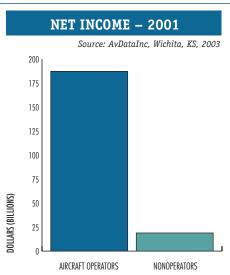
time and reduce costs, while enabling cost-effective growth.

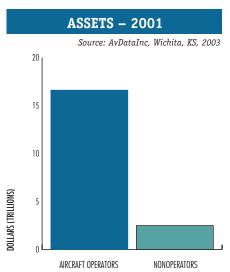
The study concluded that "use of business aircraft can and does contribute directly to shareholder value by improving performance at every level:

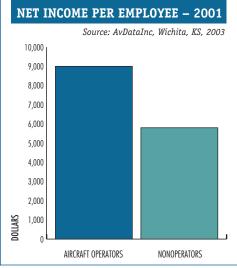
- Shareholder (e.g. share price appreciation, return on equity, etc.)
- Enterprise (e.g. profitability, asset efficiency, market share growth, customer satisfaction, etc.)

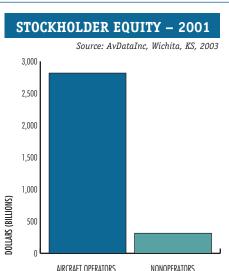

 Executive or employee level (e.g. productivity, employee satisfaction, etc.)"


NBAA Members and the Fortune 500

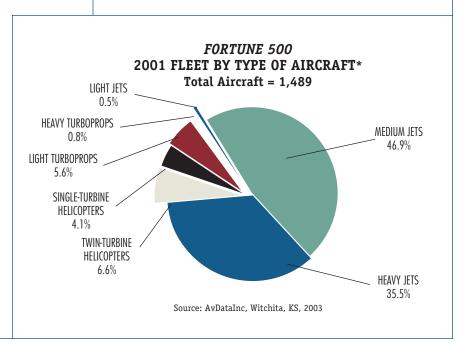

The *Fortune* 500 list of the largest U.S. industrial and service companies has long been regarded as the elite roster of American businesses.


Among the *Fortune* 500, 365 companies operate business aircraft, and approximately 80 percent of those


FORTUNE 500 INDUSTRIALS



operating companies are NBAA Members. Among the *Fortune* 100 companies, 95 have business aircraft.


Aircraft-operating companies in the *Fortune* 500 have enjoyed superior financial performance. Also, users of general aviation aircraft for business transportation dominate *Fortune's* list of the top 50 corporations in terms of dividends and capital gains returned to shareholders.

A detailed analysis of the financial performance of aircraft-operating *Fortune* 500 companies in 2001 revealed the specific financial advantages that these operators of business aircraft enjoyed over nonoperators. The study, performed by Aviation Data Service (AvDataInc) of Wichita, KS, showed:

- There were more than twice as many aircraftoperating companies as nonoperators among the Fortune 500.
- Sales of all *Fortune* 500 aircraft operators were \$6.5 trillion, while sales of nonoperators totaled just under \$1.0 trillion.
- The net income of all operators was more than \$187 billion in 2000; nonoperators' total income in that year was \$19 billion.
- Operators collectively had over \$16 trillion in assets; nonoperators' assets totaled \$2.5 trillion.

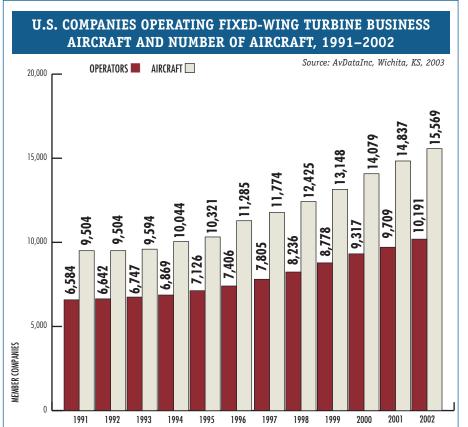
- O Net income per employee for operating companies was more than \$9,000, whereas net income per employee only was a little more than \$5,800 for nonoperating companies.
- O Stockholders' equity in operating companies was over \$2.8 trillion; equity in nonoperators was approximately \$314 billion.

The bottom line is that business aircraft are good for the bottom line. Business aircraft operators consistently outperform nonoperators in key economic performance measures, such as annual sales volume, number of employees, value of assets, stockholder's equity and annual income.

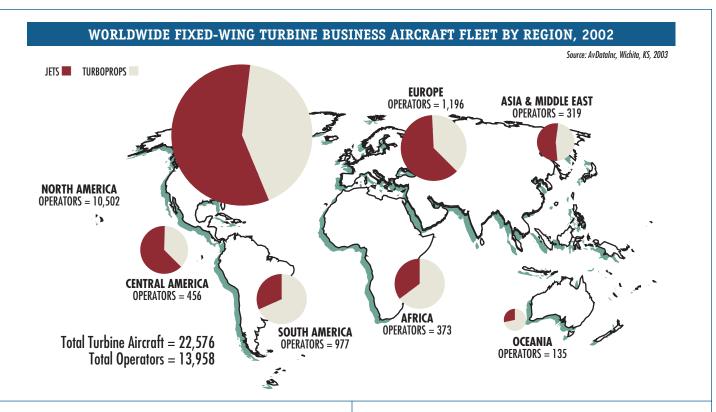
September 11

The tragic events of September 11, 2001, had a significant impact on the aviation industry. Although initially all U.S. air traffic was grounded, with business aircraft stranded all over the world, by the end of September well over 90 percent of the National Airspace System was accessible to most business aircraft operators. NBAA Member Companies immediately offered the use of their aircraft to assist the Federal Emergency Management Agency (FEMA).

As new security procedures at the nation's airports significantly increased ground time for airline travel, interest in business aviation also increased as companies were drawn to the productivity, efficiency, safety and security of business aircraft.


Business Aviation Market Forecast

Honeywell Aerospace's 11th Annual Business


Aviation Outlook projects continuing demand for new business aircraft with customers accepting more than 7,600 units, valued at over \$121 billion, for the period from 2003 to 2013.

The forecast also projects a sustained near-term market for traditional business aircraft (those with a gross takeoff weight of less than 100,000 lbs.). Based on

consistent and strong aircraft purchase plans recorded in Honeywell's 2001 and 2002 customer expectations survey, a collaborative assessment of manufacturer production forecast inputs, value analysis of future new aircraft introductions and a refined demand model that separates fractional from corporate operators, the survey indicates continued slow recovery in order levels over the next 12 to 18 months assuming the projected U.S. economic growth over the next four to six quarters is realized. Significant aircraft backlogs, bolstered by the appeal of new and derivative aircraft models entering service and continued growth in fractional ownership position the industry for a near-term period of sustained demand at current or slightly lower levels. After a record peak in 2001, deliveries will decline modestly in 2002 and 2003 and then resume growing. Later in the decade, new aircraft offerings will stimulate a steady climb toward nearly 900 aircraft deliveries per year.

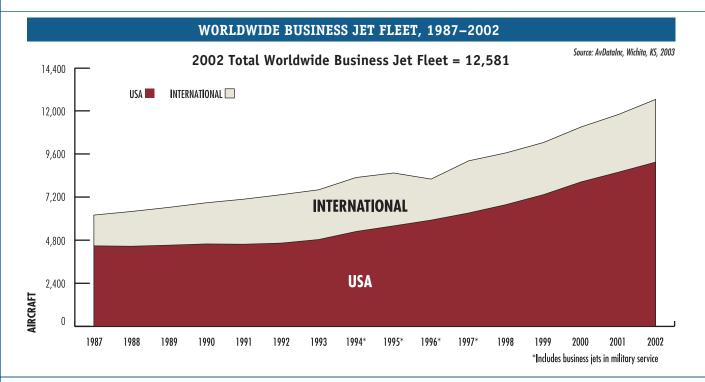
"Solid backlog levels, introduction of new jet models and continued growth shown by new demand channels such as fractional ownership, virtual airlines and other innovative approaches to business aviation are kev factors in the continued expansion of this business." according to Bob Johnson, president and

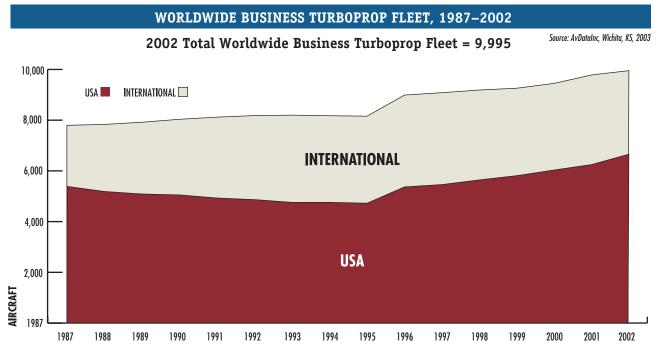
CEO, Honeywell Aerospace. "Businesses worldwide continue to recognize the value of business aircraft in providing time-saving and on-demand point-to-point transportation as a business productivity tool."

The Business Aviation Fleet

The popularity of business aircraft has increased as more companies realize the efficiency and productivity of this powerful business tool. The number of companies operating business aircraft in the United States has grown more than 50 percent from 6,584 companies operating 9,504 aircraft in 1991 to 10,191 companies operating 15,569 aircraft in 2002.

During 2002, 13,958 operators flew 22,576 turbine-powered business aircraft worldwide. More than 75 percent of the operators (10,502) and 72 percent of the aircraft (16,319) were located in North America. Europe was home to the second largest concentration of operators (1,196) and aircraft (2,289), while South America ranked third in both categories, with 977 operators and 1,531 aircraft. The remaining 9 percent of the operators and 11 percent of the aircraft are scattered throughout Africa, Asia, Central


America, the Middle East and Oceania (which includes Australia and the Pacific islands).


The worldwide jet fleet as of the end of 2002 was 12,581 aircraft, more than double the fleet size in 1986. In fact, steady growth has occurred over the last 20 years. Since 1986, the worldwide turboprop fleet also has grown, reaching 9,995 aircraft by the end of 2002.

The fleet distribution among jets and turboprops varies greatly depending on geographic area.

Operators in Asia have nearly equal proportions of jets and turboprops in their inventories. By contrast, operators in Africa, South America and Oceania utilize many more turboprops than jets, while in the United States, Europe and Central America, the fleet is more heavily weighted towards jets.

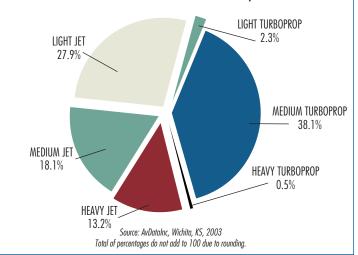
Texas is the state with the most turbine fixed-wing business aircraft (1,453). The remainder of the top states in terms of number of based turbine-powered business aircraft are: California (1,232), Florida (1,067), Ohio (914), Delaware (600), Kansas (500), North Carolina (493), Illinois (484), Georgia (467) and Michigan (435). In addition, 771 aircraft are based in the District of Columbia.

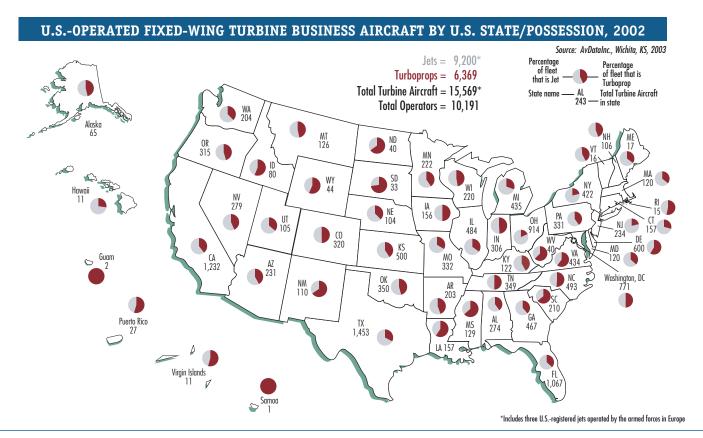
Approximately 120 U.S. aircraft are based outside the contiquous 48 states.

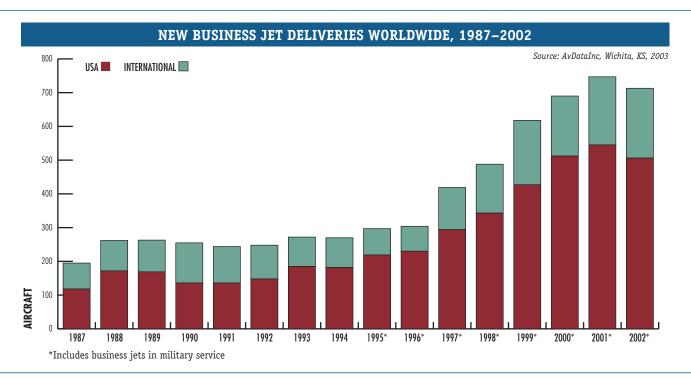
Of the 22,576 aircraft in the worldwide fleet of turbine-powered business aircraft, the most numerous type is the medium turboprop (which constitutes 41 percent of the worldwide fleet), with an average age of approximately 21 years.

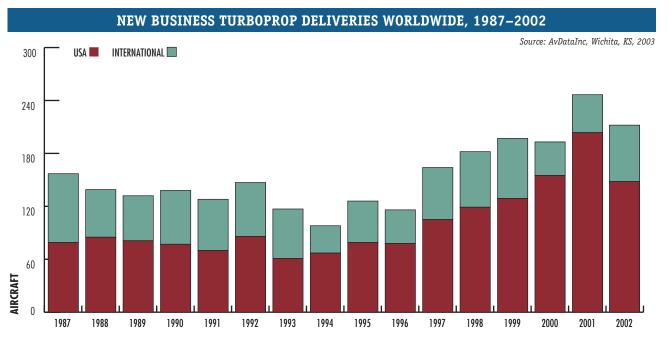
The next most prevalent business aircraft is the light jet, with an average age of about 16 years. Light jets comprise 26 percent of the worldwide fleet.

In fact, the average age of turbine-powered business aircraft worldwide is more than 13 years for every category of business airplane except one, light turboprops. This longevity is due in part to the durability and mature designs of these aircraft.


Business Aircraft Sales


In the anemic economic environment of 2002, new business aircraft sales slumped, with 901 units sold compared to 1,006 in 2001.

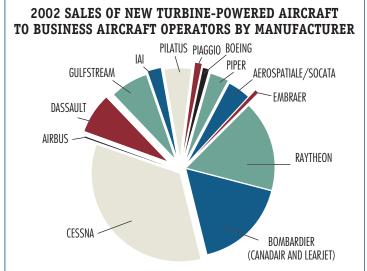

AVE. AGE OF WORLDWIDE BUSINESS AIRCRAFT BY TYPE


	Source: AvDataInc, Wichita, KS, 2003					
TYPE	NO. AIRCRAFT	AVE. AGE (YRS.)				
Heavy Jet	2,926	13.72				
Medium Jet	3,812	16.45				
Light Jet	5,843	16.01				
Heavy Turboprop	184	33.31				
Medium Turboprop	9,332	21.15				
Light Turboprop	479	6.74				

U.S. TURBINE FIXED-WING FLEET BY TYPE, 2002 Total U.S. Turbine Fleet = 15,569

Worldwide deliveries of new turbine-powered business aircraft peaked in the early 1980s and then dropped substantially until the early 1990s, when a slight reversal in the trend occurred. After peaking at more than 500 units in 1981, annual deliveries of

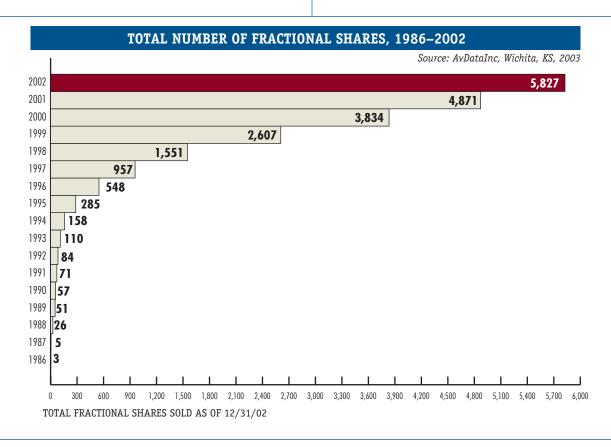
new business jets had been fairly stable at between 200 and 250 units per year for more than a decade. However, jet deliveries began to increase in 1996 to 303 units and continue to increase, reaching 747 units in 2001. Deliveries of new business turboprops


declined steadily from the 1981 peak of over 800 units, but have increased since 1997, reaching 259 units in 2001.

Bombardier, Cessna and Raytheon led all manufacturers in turbine-powered business aircraft sales during 2002, accounting for approximately 68 percent of all new-aircraft transactions worldwide.

Fractional Ownership

A growing option for business aircraft operators is fractional ownership, in which companies or individuals own a fraction of an aircraft and receive management and pilot services associated with the aircraft's operation.


Fractional ownership allows companies that have never before used business aircraft to experience many of the advantages of business aviation quickly and without many of the startup considerations typically associated with traditional flight departments. It also allows existing flight departments to supplement their current aircraft when needed. Executive Jet Aviation (NetJets), which began its fractional

Source: AvDataInc., Wichita, KS, 2003

program in 1986, and was followed several years later by Bombardier's Business Jet Solutions (FlexJet), has promoted the concept of fractional ownership the longest. Others, including Raytheon Travel Air, Flight Options and CitationShares, have since entered the marketplace. This segment of the industry has experienced substantial growth.

According to Honeywell Aerospace's Business Aviation Outlook, a major contributor to the

NUMBER OF CHARTER AIRCRAFT BY CATEGORY IN UNITED STATES							CHARTER A	AIRCRAFT IITED STAT	ES
Source: Air Charter Guide, 2003					Source: A	ir Charter Guid	e, 2003; N/A =	Not Available	
	11/2002	12/2001	12/1999	12/1992		11/2002	12/2001	12/1999	12/1996
Helicopter	772	835	954	1,397	Helicopter	1,402	1,505	1,558	1,564
Piston Single	864	945	1,350	2,183	Piston Single	588	623	733	733
Piston Twin	1,434	1,505	1,878	2,387	Piston Twin	807	781	979	940
Turboprop	1,082	1,366	1,412	1,402	Turboprop	753	1,391	1,382	1,072
Light Jet	968	925	857	649	Light Jet	491	504	516	439
Mid-Sized Jet	546	497	538	119	Mid-Sized Jet	278	283	360	243
Heavy Jet	436	381	304	111	Heavy Jet	196	169	172	113
Airliner	309	503	720	746	Airliner	N/A	1,364	1,514	968
Totals	6,411	6,957	8,013	8,994	Totals	4,515	6,620	7,214	6,072

strength of the industry continues to be fractional ownership. The fractional segment continues to grow by extending the benefits of business aviation to new customers. Although fractional operations account for about 7 percent of the global business aircraft fleet and service nearly 4,000 shareholders, Honeywell estimates that roughly 45 percent of the current aircraft order backlog is from fractional operators. By 2012, the fractional ownership fleet will comprise 10 to 12 percent of the active business aircraft in the world. On a yearly basis, fractional demand in the near term contributes around 15 to 16 percent of annual deliveries but could increase into the 20 percent range by 2012.

In 1986, there were three owners of fractionally held aircraft. By 1993, there were 110. From 2000 to 2002, the number of companies and individuals using fractional ownership grew by 52 percent, from 3,834 to 5,827 shares; the growth from 1999 (2,607) was 124 percent.

The number of airplanes in fractional programs grew 11 percent in 2002, from 696 to 776. "Honeywell Aerospace continues to believe that only a small portion of the potential fractional business has been developed, and we believe that continued growth in this segment is sustainable for years to come," noted Honeywell president and CEO Bob Johnson.

Air Charter

On-demand air charter provides companies with instant access to business aviation aircraft. Many customers are new to air charter. According to the *Air Charter Guide*, charter activity in the United States increased by 30 percent in 2001, particularly after September 11. Despite that activity, the number of aircraft has decreased in total, due to a dropoff in the number of piston aircraft. However, the number of jets has increased substantially.

The Air Charter Guide reports that charter activity experienced its seasonal slowdown at the end of 2002, which was made worse by the anemic economy and uncertainty about war. Air Charter Guide believes that one of the most significant trends is the imminent entry of on-demand, commercial, charter services into the mainstream of online travel procurement. As retail and corporate buyers have improved access to peruse and purchase charter services online, charter will grow and continue to act as the entry level engagement for all types of general aviation.

The end of 2002 was the slowest period for the Part 135 industry since September 11, 2001. The decline seems based upon the economy and, more significantly, suspended travel and business activity in anticipation of a possible war in the Middle East.

Business Flying vs. Airline Flying

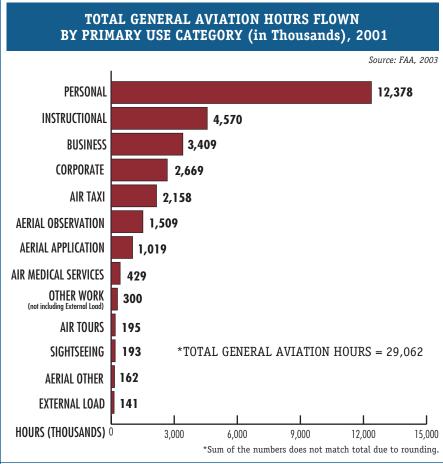
The continuing popularity of travel by general aviation aircraft is partly due to the fact that these aircraft have access to nearly 5,300 airports in the United States, compared to the 558 served by the scheduled air carriers. Furthermore, approximately 70 percent of all airline passengers travel to or from the top 30 air carrier hubs.

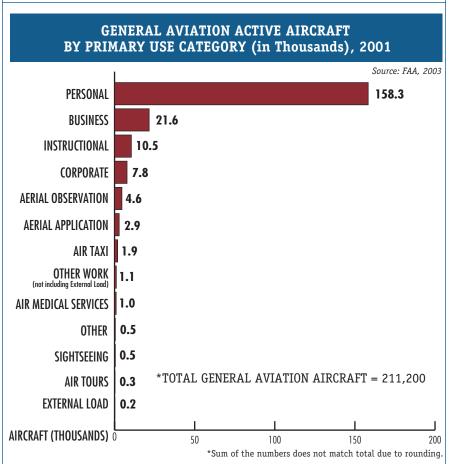
The ability to use smaller, less-congested airports located closer to one's final destination is a vital part of the utility and flexibility of general aviation aircraft. In fact, most operators of business aircraft prefer to use these so-called "reliever airports" in major metropolitan areas instead of airline hubs whenever possible. That is why general aviation operations at the busiest U.S. air carrier airports are usually a single-digit percentage of total operations at those aviation facilities.

Business aircraft operations in the New York City area are a good example of this phenomenon. At New York's major commercial service airports – Newark, LaGuardia and Kennedy – general aviation comprises only about 3 percent of the total operations because most business aircraft

TOP 50 U.S. AIRPORTS BASED ON ITINERANT GENERAL AVIATION OPERATIONS*

Fiscal	Year 2002				S	Source: FAA, 2003
ID	FACILITY NAME	STATE	TOTAL AIRPORT	ITINERANT GA	AIR CARRIER	AIR CARRIER%
			OPS	OPS	OPS	TOTAL
VNY	Van Nuys	CA	500,290	326,490	0	0.00%
DAB	Daytona Beach Int'l	FL	359,515	285,365	3,726	1.04%
FXE	Fort Lauderdale Exec. Int'l	FL	245,155	175,411	0	0.00%
DVT	Phoenix/Deer Valley	AZ	395,803	168,911	0	0.00%
APA	Denver/Centennial	CO	429,954	166,428	0	0.00%
SFB	Orlando/Sanford	FL	355,955	156,288	8,693	2.44%
RVS	Tulsa/Riverside	OK	323,913	151,704	1	0.00%
LGB	Long Beach/Daugherty Field	CA	350,974	151,040	12,273	3.50%
PDK	Atlanta/DeKalb Peachtree	GA	221,229	149,581	0	0.00%
SNA	Santa Ana/John Wayne	CA	377,073	149,072	84,087	22.30%
MMU	Morristown	NJ	239,299	149,030	2	0.00%
TEB	Teterboro	NJ	231,378	147,566	156	0.07%
ORL	Orlando Executive	FL	205,235	146,748	0	0.00%
BFI	Seattle/Boeing Field	WA	277,690	143,950	9,376	3.38%
MYF	San Diego/Montgomery Field	CA	240,991	137,971	5	0.00%
POC	La Verne/Brackett Field	CA	249,207	135,465	3	0.00%
ADS	Dallas/Addison Field	TX	158,954	130,775	150	0.09%
FFZ	Mesa/Falcon Field	AZ	272,099	130,614	364	0.13%
CRQ	Carlsbad/McClellan Palomar	CA	206,951	129,102	0	0.00%
VRB	Vero Beach	FL	236,172	123,185	2	0.00%
PTK	Pontiac/Oakland Co. Int'l	MI	276,318	118,383	703	0.25%
PWK	Chicago/Palwaukee	IL	161,665	115,933	0	0.00%
OAK	Metropolitan Oakland Int'l	CA	374,216	114,958	156,212	41.74%
FPR	Fort Pierce	FL	193,332	113,296	0	0.00%
BED	Bedford Hanscom Field	MA	214,789	112,084	185	0.09%
DAL	Dallas/Love Field	TX	239,732	110,251	84,566	35.28%
FTW	Fort Worth/Meacham	TX	232,615	110,004	580	0.25%
PRC	Prescott	AZ	337,362	107,816	3	0.00%
SDL	Scottsdale	AZ	189,391	106,604	1	0.00%
ICT	Wichita/Mid Continent	KS	214,341	105,688	19,464	9.08%
SAT	San Antonio Int'l	TX	236,189	103,978	67,374	28.53%
HEF	Manassas Regional	VA	135,816	103,915	0	0.00%
CMA	Camarillo	CA	197,911	103,341	0	0.00%
GFK	Grand Forks	ND	282,374	103,319	4,264	1.51%
DPA	Chicago/DuPage	IL	175,648	102,750	0	0.00%
HPN	White Plains/Westchester	NY	198,631	102,701	10,690	5.38%
FRG	Farmingdale/Republic	NY	207,153	98,845	155	0.07%
PBI	Palm Beach Int'l	FL	187,159	94,712	50,561	27.01%
SRQ	Sarasota Bradenton	FL	162,213	94,530	8,821	5.44%
HOU	Houston Hobby	TX	247,824	92,610	112,098	45.23%
SUS	Spirit of St. Louis Field	M0	179,949	92,292	62	0.03%
PIE	St. Petersburg-Clearwater	FL	214,191	91,986	7,484	3.49%
MLB	Melbourne/Kennedy	FL	194,512	91,693	2,641	1.36%
PAE	Everett Paine Field	WA	198,501	91,429	3,553	1.79%
BJC	Broomfield Jeffco	CO	182,279	90,455	0	0.00%
PNE	Northeast Philadelphia	PA	153,238	90,137	0	0.00%
LVK	Livermore	CA	219,377	89,992	0	0.00%
FCM	Minneapolis/Flying Cloud	MN	181,037	89,327	0	0.00%
APF	Naples	FL	135,917	88,887	0	0.00%
RHV	San Jose Reid-Hillview	CA	230,881	88,174	49	0.02%


^{*} Ranked by itinerant general aviation (GA) operations. An itinerant flight operation originates at one airport and terminates at another airport located at least 25 miles from the origination point.


operators utilize alternative airports – Teterboro or Morristown in New Jersey or Westchester County and Islip in New York.

Similarly, many of the most popular U.S. airports, in terms of general aviation itinerant operations, have little or no airline service. Partly because so many general aviation aircraft are based in the populous states of California, Florida, Texas and

New Jersey, the list of top 50 airports by general aviation operations is dominated by airports located in those states. Eleven of the 50 airports with the most general aviation itinerant operations are located in Florida, 10 are in California and five are in Texas. The list of top 50 general aviation airports includes such centers of business aviation as Van Nuys Airport in California, Teterboro and Morristown airports in New Jersey, Westchester County Airport

TOP 30 U.S. AIR CARR	IER LAR	GE HUB A	AIRPORTS 1	IN 2002	
				Sou	rce: FAA, 200
FACILITY NAME	STATE	TOTAL AIRPORT OPS	AIR CARRIER OPS	GA OPS	GA PERCENT TOTAL
Atlanta Hartsfield Int'l	GA	882,407	642,727	16,188	1.83%
Chicago/O'Hare Int'l	IL	901,703	612,553	24,290	2.69%
Dallas/Ft. Worth Int'l	TX	762,371	493,772	12,784	1.68%
Los Angeles Int'l	CA	637,588	447,170	15,306	2.40%
Phoenix Sky Harbor Int'l	AZ	577,820	370,247	51,708	8.95%
Minneapolis-St. Paul Int'l	MN	497,934	343,527	68,377	13.73%
Detroit Metro Wayne County	MI	490,663	337,816	19,282	3.93%
Denver Int′l	CO	495,104	330,825	12,961	2.62%
Las Vegas/McCarran Int'l	NV	491,205	317,700	72,181	14.69%
Miami Intʻl	FL	442,358	304,863	61,577	13.92%
Lambert-St. Louis Int′l	MO	453,302	295,148	24,001	5.29%
Newark Int'l	NJ	407,730	282,849	12,612	3.09%
Philadelphia Int'l	PA	467,160	267,402	72,198	15.45%
George Bush/Houston Intercontinental	TX	458,649	264,685	23,360	5.09%
San Francisco Int´l	CA	350,133	260,501	16,386	4.68%
John F. Kennedy Int'l	NY	291,021	245,475	7,166	2.46%
Charlotte/Douglas Int'l	NC	465,246	239,173	46,168	9.92%
Memphis Int´l	TN	393,858	237,385	46,033	11.69%
Seattle-Tacoma Int'l	WA	361,814	217,352	3,813	1.05%
Baltimore-Washington Int'l	MD	310,281	210,349	29,728	9.58%
LaGuardia New York	NY	354,218	207,915	9,100	2.57%
Boston Logan Int'l General Edward Lawre	nce MA	405,370	207,138	18,241	4.50%
Orlando Intʻl	FL	303,328	201,203	27,727	9.14%
Pittsburgh Int´l	PA	439,360	188,154	23,698	5.39%
Honolulu Int'l	HI	316,089	174,544	76,157	24.09%
Chicago/Midway	IL	293,076	161,468	54,354	18.55%
Dakland Int'l	CA	374,216	156,212	114,958	30.72%
Salt Lake City Int'l	UT	401,491	151,121	66,144	16.47%
Cincinnati/N. Kentucky Int′l	KY	473,084	150,943	24,816	5.25%
Kansas City Int′l	MO	195,110	149,983	8,027	4.11%

in New York and Centennial Airport in Denver, Colorado.

General aviation accounts for less than 8 percent of the total traffic at the top 30 major air-carrier hub airports in the country.

Pilot Population and Flight Hours

The pilot population in the United States remains fairly stable. Numbers for 2002 show that more than 137,000 aviators possess a commercial pilot certificate, and more than 147,000 have an airline transport pilot certificate. The vast majority of business aircraft pilots possess the most advanced pilot licenses.

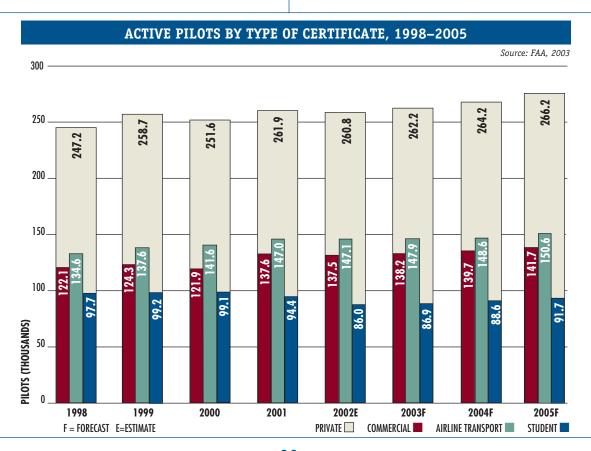
While the number of U.S. student pilots and private pilots (those qualified to fly single-engine aircraft) was declining for several years, the FAA predicts an upturn in the number of student and private pilots in the future. A community effort called "Be a Pilot" has caused renewed interest and growth in general aviation at the grassroots level.

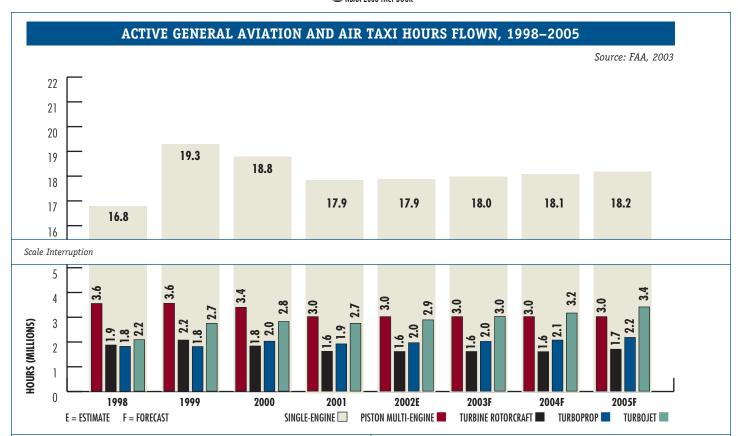
Of the more than 211,000 general aviation aircraft in service today in the United States, more than 158,000 are dedicated primarily to personal use, according to the FAA. The agency estimates that nearly 30,000 general aviation aircraft are utilized primarily for business and corporate missions.

It should be noted, however, that at least some of the aircraft flown primarily for personal use and other missions are sometimes operated for business purposes.

Indeed, in fiscal year 2002, the annual hours flown by general aviation aircraft on business and corporate missions (6.1 million) is about half of the number of

hours flown for personal use (12.4 million). When other business-oriented purposes are taken into account – for example, air taxi and flight instruction – business flying actually is the most common use for general aviation aircraft. In fact, the General Aviation Manufacturers Association (GAMA) reports that approximately 70 percent of all the hours flown by general aviation aircraft are for business and commercial purposes.


Sixty-one percent of the more than 29 million hours flown in 2002 by general aviation aircraft in the United States were in single-engine, piston-powered airplanes, which are the most numerous type of aircraft in the fleet. Turbine airplanes accounted for more than 16 percent of the total flight hours in 2002, while multi-engine piston-powered aircraft flew about 10 percent of the total hours in 2002. Helicopters accounted for approximately 7 percent of the flight hours in 2002.


The total number of hours flown by all types of U.S. general aviation aircraft increased slightly from 2001 to 2002.

Business Aviation and Taxes

All 50 states impose some tax on aviation, whether it is a fuel tax, aircraft registration fee, personal property tax or a sales and use tax. But each state differs in its assessment of the taxes. Some states use aircraft registration fees merely as a tracking method, while others derive substantial revenue from these fees and use the monies to fund aviation projects in the state. Personal property taxes that are assessed at the local and county level usually go into a county fund. Sales and use taxes vary greatly from state to state. Differences mainly stem from each state's definition of commercial transportation.

In addition to the state taxes on aviation, operators also are required to pay Federal taxes. For noncom-

mercial aviation, there is a 21.9 cents per gallon excise tax on jet fuel and a 19.4 cents per gallon excise tax on aviation gasoline. Operators considered commercial for tax purposes are entitled to a refund on a portion of the fuel tax: 17.5 cents per gallon for jet fuel and 15 cents per gallon for aviation gasoline. Commercial operators also are subject to a 7.5 percent passenger transportation tax and a 6.25 percent property transportation tax for domestic transportation. Additionally, there is a \$3 segment fee charge for all commercial segments into nonrural airports (rural airports are exempt from the segment fee, but not from the transportation tax). Commercial transportation leaving the United States is subject to a \$13.40 per person "head tax," but no transportation tax. Commercial transportation to Alaska and Hawaii is subject to a \$6.70 "head tax" and the appropriate transportation tax and segment fees. For more information about business aviation taxes, visit www.nbaa.org/taxes.

Excellent Safety Record

Traditionally, corporate/executive and business aircraft operators have compiled the best safety records of any segment of general aviation. Most of these operators have taken numerous steps to enhance safety, and many fly with two pilots. Regular recurrent training is provided for pilots and maintenance technicians. Some corporate/executive operators fly to FAR Part 121 standards (the rules that cover the major air carriers). The majority, however, operate in accordance with FAR Part 91.

Through such safety initiatives, corporate/executive aircraft, flown by two-person professional crews, have compiled in recent years a safety record that is comparable to that of FAR Part 121 airlines. In addition, on average since the mid-1980s, the accident rate among corporate/executive operators has been superior to that of commuter air carriers and air taxis operating under FAR Part 135.

The year 2002 shows one of the best corporate/ executive (professionally flown) accident records ever – 0.116 accidents and 0.029 fatal accidents

per 100,000 flight hours. Business aviation (non-professionally flown) also compiled in 2002 a record of 1.08 accidents per 100,000 flight hours.

In 2002, all airplanes and helicopters, professionally flown for corporate/executive use under FAR Part 91, were involved in eight accidents including two fatal accidents resulting in six fatalities, according to the NTSB and Robert E. Breiling Associates, Inc.

Safety is the top priority of NBAA, and the Association actively continues to promote safety and professionalism among its Members through numerous endeavors, including its Flying Safety Awards Program, the *Business Aviation Safety Journal*, its Safety Committee and the NBAA web site at www.nbaa.org/safety.

2002 CORPORATE/EXECUTIVE AIRCRAFT ACCIDENTS								
Source: National Transportation Safety Board (NTSB) and Robert E. Breiling Associates, Inc., 2003								
DATE	AIRCRAFT TYPE	LOCATION	FATAL	SERIOUS	MINOR	NONE .	AIRCRAFT DAMAGE	
January 4	CL-604	United Kingdom	5	0	0	0	DESTROYED	
February 6	BE-200	Camden, AR	0	0	0	8	SUBSTANTIAL	
February 4	G-V	Palm Beach, FL	0	0	0	2	SUBSTANTIAL	
October 6	L-60	Santa Cruz, Brazil	1	1	3	0	DESTROYED	
October 16	PC-12	Trenton, NJ	0	0	0	4	SUBSTANTIAL	
November 1	AC-690B	New Braunfels, TX	0	0	0	3	SUBSTANTIAL	
December 14	BE-200	Jacksonville, FL	0	0	0	3	SUBSTANTIAL	
December 16	DH-125-1F	Seattle, WA	0	0	0	3	SUBSTANTIAL	
Note: The last three accidents were listed as Personal or Business operations by NTSB; Corporate/Executive by Breiling Associates								

AIRCRAFT ACCIDENT RATES, 1990–2002 (per 100,000 flight hours) Compiled by Robert E. Breiling Associates, Inc., 2003 GENERAL COMMUTER CORPORATE/ AVIATION* AIR TAXI** AIR CARRIERS+ AIRLINES++ EXECUTIVE# BUSINESS##

	GENERAL		COMMUTER		CORPORATE/	
	AVIATION*	AIR TAXI**	AIR CARRIERS+	AIRLINES++	EXECUTIVE#	BUSINESS##
DATE	TOTAL/FATAL	TOTAL/FATAL	TOTAL/FATAL	TOTAL/FATAL	TOTAL/FATAL	TOTAL/FATAL
1990	7.77/1.55	4.76/1.29	0.641/0.171	0.198/0.171	0.210/0.090	3.71/0.96
1991	7.85/1.56	3.93/1.25	1.004/0.349	0.221/0.034	0.230/0.080	3.08/0.82
1992	7.74/1.65	3.86/1.22	0.942/0.300	0.146/0.032	0.210/0.080	2.17/0.68
1993	8.92/1.73	4.16/1.15	0.606/0.152	0.181/0.008	0.230/0.070	2.02/0.52
1994	8.97/1.79	4.58/1.40	0.359/0.108	0.168/0.030	0.180/0.070	1.81/0.51
1995	8.20/1.64	4.39/1.41	0.457/0.076	0.267/0.022	0.250/0.110	2.04/0.67
1996	7.61/1.49	4.44/1.43	0.399/0.036	0.276/0.036	0.140/0.060	1.71/0.34
1997	7.20/1.37	2.65/0.48	***1.628/0.509	0.309/0.025	0.230/0.060	1.41/0.39
1998	7.47/1.41	2.08/0.45	2.262/0.000	0.297/0.006	0.091/0.000	1.14/0.30
1999	6.42/1.15	2.36/0.36	3.793/1.145	0.296/0.011	0.230/0.130	1.40/0.40
2000	6.32/1.18	2.25/0.62	3.247/0.271	0.311/0.016	0.125/0.060	1.28/0.37
2001	6.27/1.17	2.27/0.57	1.664/0.666	0.225/0.034	0.108/0.031	1.06/0.23
2002P	6.53/1.31	1.93/0.56	2.919/0.000	0.217/0.000	0.116/0.029	1.08/0.36

^{* =} All U.S.-registered civil aircraft not operating under FAR Part 121 or 135

^{** =} FAR Part 135 nonscheduled air carriers

^{+ =} FAR Part 135 scheduled air carriers

^{++ =} FAR Part 121 scheduled and nonscheduled air carriers

^{# =} Aircraft owned or leased and operated by a corporation or business firm for the transportation of personnel or cargo in furtherance of the corporation's or firm's business and which are flown by professional pilots receiving a direct salary or compensation for piloting.

^{## =} The use of aircraft by pilots (those not receiving direct salary or compensation for piloting) in conjunction with their occupation or in the furtherance of a business.

^{***} Increased due to Part 135 scheduled carriers re-certifying under FAR Part 121.

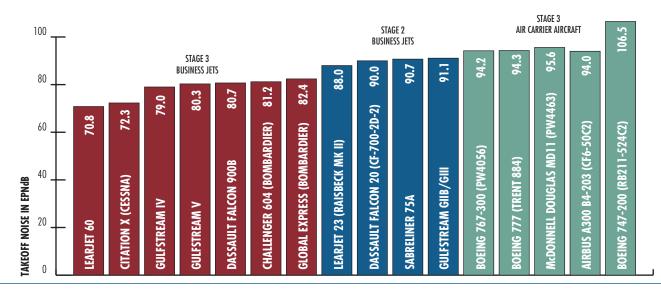
Flying Quietly

All currently manufactured business jets meet FAR Part 36 Stage 3 requirements, the most stringent of the FAA's three-tier rating system for aircraft noise. Therefore, new-production business jets are among the quietest airplanes operating today.

Few of the noisiest Stage 1 business aircraft still remain in service; less than 1 percent of the NBAA fleet is composed of Stage 1 aircraft. NBAA worked with the FAA on a resolution that called for "all NBAA Members to refrain from adding Stage 1 aircraft to their fleets beginning in January 2000 and furthermore recommends ending operation of such aircraft by January 2005."

Current regulations banned Stage 2 operations by large aircraft over 75,000 pounds as of January 1, 2000. Stage 2 business aircraft under 75,000 pounds are not currently addressed by any Federal phaseout program.

Many Stage 2 business airplanes are being retired from the fleet as operators upgrade to newer models. Other Stage 2 aircraft, such as Gulfstream IIs and IIIs, can be fitted with hush kits so that they can be recertificated as Stage 3.


Because of the nature of the Effective Perceived Noise Level Decibel (EPNdB) system of measuring aircraft acoustical output, lighter-weight Stage 3 aircraft, such as business jets, are quieter than heavier, Stage 3 airline-type airplanes. The "Aircraft Noise Comparisons" chart shows that even some Stage 2 business jets have lower EPNdB ratings than Stage 3, wide-body, airline-type aircraft.

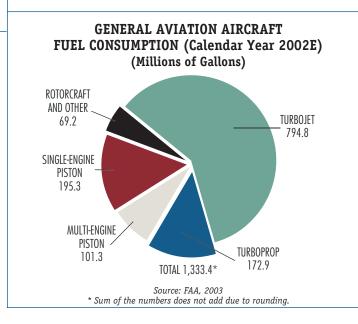
Furthermore, operators at many airports with major business aviation activity, such as Westchester County Airport just north of New York City, voluntarily limit their flying during nighttime and early morning hours in order to be good neighbors to the surrounding communities. Typically, Stage 3-only airport restrictions, which are relatively few, occur at night after 10:00 p.m. local time.

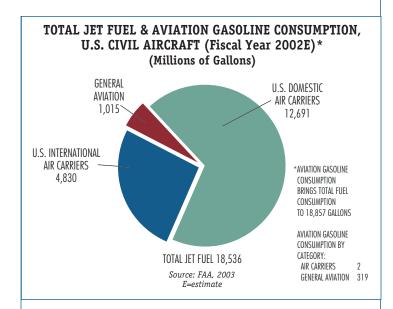
Finally, regardless of the time of day, many business jet operators practice quiet-flying techniques to reduce their noise footprint around airports. NBAA's noise procedures are recommended as a standard for all operations for which aircraft manufacturers have not recommended specific procedures.

AIRCRAFT NOISE COMPARISONS BUSINESS JETS VS. WIDE-BODY AIRLINERS

Source: FAA Advisory Circular 36-1H

Fuel Consumption: A Drop in the Bucket


Although general aviation in the United States flies 166 million passengers each year, this segment of aviation consumes slightly more than 7 percent of all aviation fuel burned annually.


General aviation uses virtually all of the aviation gasoline (avgas) consumed each year; however, avgas represents only about 1.7 percent of all aviation fuel consumed.

Jet fuel is the predominant type of aviation fuel in civil aviation, but general aviation consumes just over 5 percent of this type of fuel each year. Domestic U.S. air carriers use nearly 70 percent of the jet fuel burned in the United States by nonmilitary operators, while U.S. international airlines consume about 26 percent of the jet fuel used annually by civil aircraft.

General aviation consumed approximately 1,333 million gallons of fuel in 2002. The breakdown by type of general aviation aircraft is shown as follows:

- Turbojet aircraft burned about 795 million gallons, or roughly 60 percent, of the total fuel consumed by general aviation in 2002.
- O Turboprops consumed approximately 173 million

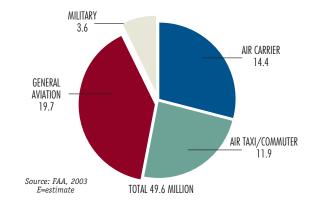
- gallons, or 13 percent, of the general aviation fuel burned in 2002.
- Piston-powered aircraft consumed 297 million gallons, or approximately 22 percent, of general aviation fuel in 2002.
- Helicopters and other aircraft accounted for nearly 69 million gallons of fuel consumed in 2002, or about 5 percent of the total.

The fuel efficiency of the business aviation fleet will continue to improve in the coming years. Engine manufacturers, always mindful of the need to lower operating costs, are continually enhancing the fuel efficiency of the powerplants used on business aircraft. Likewise, airframe manufacturers have helped the push for greater fuel efficiency by designing new aircraft that incorporate advances in aerodynamics and lightweight structures that reduce weight and drag and thus lower fuel consumption.

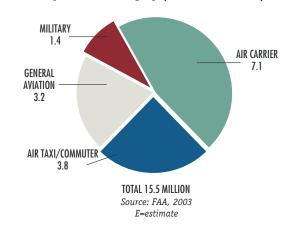
			NOISE LEVELS FOR		BUSINESS JETS				So	Source: FAA Advisory Circular AC 36-1H	sory Circulo	r AC 36-1E
MODEL. BEECHJET 400 BD-700-1A10 (Global Express)	MTOW 1,00 15.78 93.50	MTOW 1,000# MLW 1,000 15.78 14.22 93.50 78.50	#	ENGINES 2 2 2	THRU	BPR 2.10 5.00	FLAPS TO 10 16	FLAPS AP 30 30	T0 88.6 82.1	(EPNdB) SL 93.7 88.7		STAGE 3 3
BD-700-1A10 (Global Express) BD700-1A10 (Global Express) (Learjet STC: SA8184NM-D) CI-600	96.00 75.00 36.00	78.50 75.00	BR700-710-A2-20 Rolls Royce/ BR700-710-A2-20 A1E-502	0	14.97 14.97 7 50	5.00 5.00	16 20 20 20	30 30 45	82.7 75.6 81.6	88.6 89.3 80.3	89.8 89.7 91.2	m m r
	40.40	36.00	ALF 502L/L-2/L-2C ALF-502L/L-2/L-2C	. 2 2	7.50	5.00	200	45	84.0	87.2	91.6	ı m m
	41.25	36.00	ALF-502L/L-2/L-2C	2 0	7.50	5.00	20	45	84.8	89.5	91.6	· m ·
	53.00	47.00	CF-34-3A1 CF-34-3B1	7 2	9.22	00.0	70 50 70	45	78.7	82.4	92.1	n m
	75.00	06.99	CF34-8C1	5	13.79	6.30	∞ (45	82.7	89.4	92.6	m (
	72.50	36.00	CF34-8C1 CF34-1A	2 2	13./9	6.30	% C	45 45	82.1	89.5 84.8	92.6	mm
	42.10	36.00	CF34-1A	2	8.65	6.30	20	45	79.4	84.9	89.4	nm
	45.10	36.00	CF-34-1A	2	8.65	6.30	20	45	80.5	84.6	90.1	3
	43.10	36.00	CF-34-3A	2 0	8.72	6.30	20	45	79.4	85.9	89.4	m n
	45.10	36.00	CF-34-3A1 CF-34-3A1	2 2	9.22	6.00	20	45	0.67	85.7	90.1	റന
	48.20	38.00	GE CF34-3B	2 2	8.72	6.30	20	45	81.2	86.2	90.3	nm
	47.60	38.00	GE CF34-3B	2	8.72	6.30	20	45	80.9	86.2	90.3	3
	10.30	9.90	JT15D-1	2 0	2.20	3.30	15	40	76.4	86.1	87.7	m (
	11.80	0.11	J115D-1/-1A F744-1A	7 6	2.20	3.30	15 15	40 35	73.7	86.2	67.9	n r
	12.37	11.50	FJ44-2C	2 2	2.10		15	35	74.5	88.88	91.4	n m
	13.30	12.70	JT15D-4	2	2.50	2.68	15	40	80.1	86.7	90.5	3
	14.80	13.50	PW530A	2 0	2.20	0	15	40	73.7	85.2	91.2	m
	12.50	12.00	4-USIISU-4 11715D-4	۷ ۸	2.50	2.00	o (2	04 7	80.1	86.7	90.5	n m
	15.50	14.30	JT15D-5	2 2	2.90	2.10	20	35	89.3	94.7	88.5	nm
	16.30	15.20	JT15D-5D	5	2.30		7	35	82.9	95.9	85.7	23
	15.90	15.20	JT15D-5A	2 0	2.90	2.10	7 -	35	83.7	94.7	88.0	m n
	16.63	15.20	71152-5A PW535A	7 2	2.90	7.10		32	70.3	89.9	90.5	n m
	20.00	18.70	PW545A	2	3.00		7	35	72.4	85.3	93.1	3
	21.00	17.00	TFE731-3B-100S	2	2.90	3.11	20	37	84.9	92.5	92.4	m
	22.00	20.00	TFE/31-3B-100S TFE731-3C-100S	~ ~	2.90	3.11		3/	80.1	92.4	93.8 8.8	m m
	23.00	20.00	TFE731-4R-3S	2 2	3.20			6 4	78.9	91.9	90.8	n m
	35.70	31.80	AE3007C	5	5.00	5.30	15	35	72.3	83.0	90.2	n
	14.70	14.00	JT15D-4B	2	2.50	2.68	20	35	87.9	91.6	85.1	3
	15.10	14.40	JT15D-4B	5	2.50	2.68	7	35	80.0	91.3	86.2	m (
	19.30 28.66	17.64	TFE/31-2-1C CF700-2D-2	~ ~	3.23	2.80	15 15	52 40	82.2	86.2	95.2 101.7	m c
51)	28.66	27.32	CF700-2D-20	2 2	4.50	2.00	0	40	81.9	94.0	99.7	1 W
FALCON 20-C5/D5/E5 (M3500)	29.10	27.73	TFE731-5AR-2C	2	4.50	3.70	15	40	82.9	88.4	90.7	m
	29.10	27.73	TFE-731-5BR-2C	2	4.80	3.70	15	40	80.3	7.06	200.7	3
	30.50	28.88	TFE731-5BR-2C	5	4.80	3.70	15	40	82.9	91.9	90.6	m (
	20.10	27.72	CF/00-ZD-Z TFF731-5AP-2C	7 6	4.50	3.70	10	04 %	90.0	92.3 88.6	103.0	v .
	29.10	27.73	TFE-731-5BR-2C	2 2	4.80	3.70	10	40	79.3	6.06	90.06	n m
	30.50	28.88	TFE731-5BR-2C	2	4.80	3.70	10	40	81.9	92.1	90.3	3
	32.00	27.56	ATF3-6-2C	2	5.40	2.90	10	40	87.5	88.3	95.9	m (
	38.80	35.72	TFE/31-3-1C TEE721 40 1	m n	3.70	2.80	50	84 %	84.3	91.6	97.4	n c
	40.78	35.71	TFE731-3-1C	nm	3.70	2.80	20	48 48	0.00	92.7	97.1	nm
	40.79	35.72	TFE731-40-1	m	3.70	3.50	20	94	83.8	92.0	95.2	m
	32.00	27.60	ATF3-6A-4C	2	5.20	2.90	5	40	83.9	0.68	93.9	3
	32.00	28.88	ATF3-6A-4C TEE721 6AB 1C	2 6	5.20	2.90	ر د	40	83.9	89.0	94.2	m n
	45.50	42.00	TFE731-5AR-1C	n ~	4.75	3.70	20	0 4 07	82.9	89.5	91.7	n ~
	46.50	42.00	TFE731-5BR-1C	n	4.75	3.70	20	40	80.7	91.2	91.7	n m
	49.00	44.50	TFE731-60-1	cn (5.00	4.40	20	40	79.8	90.5	92.3	e (
	36.50	33.00	CFE/38-1-1B SPFV 511-8	~ ~	5.72	0.00	20	40 30	79.4	86.4	93.1	m c
	65.50	58.50	SPEY 511-8	5	11.40	0.64	10	39	92.5	103.0	98.3	5 2
	69.70	58.50	SPEY 511-8	2 0	11.40	0.64	10	39	91.1	103.4	97.3	2 0

Column C	G-IV GULESTREAM W/ASC 190 G-V	74.60 90.50	66.00 75.30	TAY 611-8 BR700-710A1-10	2 2	13.85 14.70	3.00 4.20	20 10	39 39	77.5 80.3	86.6 89.1	92.0 90.8	mm	ı
1,65 2,00 1,700, 14,00 2, 10 1,700, 14,00	G100 G200	24.65 34.85	20.70	TFE731-40R-200G PW306A	2 2	4.25 6.04	2.90 4.50	25 25	40 40	79.1 81.4	89.5 85.8	91.9	m m	
The color of the	G200	34.85	28.00	PW306A	2	6.04	4.50	25	40	81.4	85.8	90.9	23	
### 1975 1975	1124 WESTWIND	22.90	19.00	TFE731-3-1G TFE731-3-1G	2 6	3.70	2.80	20	40	81.2	88.4	93.0	m m	
Handle Book of the property of	1125 ASTRA	24.70	20.70	TFE731-3A-200G	5	2	9	12	40	84.1	89.7	89.8	n m	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1125 ASTRA	23.50	20.70	TFE731-3A-200G	2 0			12	40	82.3	8.68	89.8	m n	
1.00 1.00	1122 ASINA SEA Galaxy	34.85	28.00	IFL/31-40K PW306A	2 2	6.04	4.50	00	04 4	81.4	85.8	92.7	ი ო	
11 11 11 11 11 11 11 1	23 Raisbeck MK II	12.50	11.90	CJ610-1/-4	2 0	1.34	0.00	10		88.0	103.8	98.0	2 0	
The control of the co	24/24D	13.50	11.90	CJ610-1/-4 CJ610-6	2 2	2.95	0.00	50 20	40	91.8	99.3	100.7	2 2	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	24B/D Raisbeck MK II	13.50	11.88	CJ610	7	i.	0	10	40	87.6	104.0	98.0	2	
Column	24D 24D	13.50	11.90	CJ610-6 CJ610-6	~ ~	2.95	0.00	50 50 50	40 40	91.8 91.9	99.3 104.0	101.7 96.7	2 2	
nd	24E	12.90	11.90	CJ610-6	2 0	2.95	0.00	∞ (40	84.3	103.9	95.3	2	
March Marc	24F 24E-A	13.50	11.90	CJ 610-6 CJ 610-6	2 0	2.95	00.0	∞ ∝	04	85.8	103.7	95.3	2 6	
old 15.00 1	25	16.00	13.30	CJ610-6	7 2	2.95	0.00	10	40	93.5	103.9	99.0	2	
14.00 13.00 0.000-6/48 2 2.95 0.000 20 0.00 0.05 0.05 0.0	25 26/36B/C Daish MIV II	15.00	13.30	CJ610-6	2 5	2.95	0.00	5	0,	94.0	99.3	100.8	2 5	
1500 1300 CD10164 2 2.55 CD20 20 0 40 94.00 30.00 31.00	25/25b/C raish mm n 25B/C/D/F XR Dee Howard	16.30	13.30	CJ 610-6/8A	7 2	2.95	0.00	10	4 4	93.5	103.9	0.66	2 2	
1,000 1,00	25C	15.00	13.30	CJ610-6	2	2.95	0.00	20	40	94.0	99.3	100.8	2	
150 14.30	25D 26D/26F	15.00	13.30	CJ610-6	2 0	2.95	0.00	50 °	40	94.0	99.3	102.7	2 0	
150 153 1717312-38 2 350 8 0 170	28/29 28/29	15.00	15.30	CJ610-6/8A CJ610-8A	7 2	2.95	0.00	0 00	9 4	87.0	105.7	95.2 101.7	7 2	
1500 1530 178731-238 2 350 454 40 810 810 870 92.8 100	31	15.50	15.30	TFE731-2-3B	5	3.50		∞ ∞	40	79.6	87.2	92.6	ım	
1,000 14,300 THEFF11-2-28 2 3.50 2.64 2.6 4.0 84.5 8.9 9.1 1,000 14,300 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 14,300 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 14,300 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 14,300 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 14,300 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.64 8 4.0 78.7 8 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.0 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.50 6.2 88.7 9.1 1,000 1,000 THEFF11-2-28 2 3.50 2.50 4.50 6.2 88.7 9.1 1,000 1,000 1,000 1.0 1.0 1.0 1.0 1.0 1,000 1,000 1,000 1.0 1.0 1.0 1.0 1,000 1,000 1.0 1.0 1.0 1.0 1,000 1,000 1.0 1.0 1.0	31	16.50	15.30	TFE731-2-3B TEE731 2 3B	2 0	3.50		∞ ∘	40	81.0	87.0	92.6	m n	
1,000 4,300 FF2713-2-28 2 3,50 2,64 6 6 6 6 6 6 6 6 6	31A 31A	17.00	15.30	IFE/31-2-3B TFE/31-2-3B	7 2	3.50		∞ ∞	40 40	82.9	86.8	92.8	n m	
1,000 1,430 1,1211-2.23 2 3.50 2.44 2.6 40 68.6 68.6 9.13 1.2 1.	35/36	18.00	14.30	TFE731-2-2B	5	3.50	2.64	20	40	84.5	87.9	92.2	m	
18.30 15.30 THEP312-28 2 3.50 2.64 8 40 79.2 86.7 91.4 18.30 15.30 THEP312-28 2 3.50 2.64 8 40 79.2 86.7 91.4 18.30 15.30 THEP312-28 2 3.50 2.64 8 40 74.4 18.30 15.30 THEP312-28 2 3.50 2.64 8 40 74.4 18.30 15.30 THEP312-28 2 3.70 8 40 74.4 21.00 17.00 THEP313-48 2 3.70 8 40 85.5 90.7 21.00 17.00 THEP313-48 2 3.70 2.90 2.90 40 21.50 17.50 THEP313-48 2 3.70 2.90 2.90 40 21.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70 0 45 84.2 89.2 21.50 17.50 THEP313-48 2 3.70 2.70	35/36 35A	17.00	14.30	TFE731-2-2B TFE731-2-2B	۸ ۷	3.50	2.64	50 8	40	84.0	86.9	92.2	mm	
1830 1530 PHP314-28 2 350 2.66 8 440 744 867 914 914 915	35A/36A	18.00	14.30	TFE731-2-2B	5	3.50	2.64	∞ ∞	40	78.7	87.4	91.3	nm	
10 10 10 11 11 11 11 11	35A/36A	18.30	15.30	TFE731-2-2B	2 0	3.50	2.64	∞ 8	40	79.2	86.7	91.4	m c	
1950 1700 17731-134-28 2 3.70 8 40 855 9 9 9 9 9 9 9 9 9	50A 45	20.50	15.30	ĭ	7 2	3.50	7.04	8 8	04 04	74.4	87.8	91.4 93.4	n m	
21.00 17.00 17.251.34.24.8 2 3.70 8 40 86.35 90.7	55	19.50	17.00		2	3.70		∞ (40	84.2	90.9	90.6	т.	
2150 1750 TIFET31-14AR-3B 2 390 290 20 40 877 914 924	55 55R	21.00	17.00	TFE731-3A-2B TFE731-3A-2B	۸ د	3.70		∞ 5	40 40	85.5	90.7	90.6	mm	
1,000 1,00	255	21.50	17.00	TFE731-3AR-3B	5	3.90	2.90	50	40	87.0	91.4	92.4	n m	
2,100 1,00	255	21.00	17.00	TFE731-3AR-3B	2 0	3.90	2.90	20	40	86.7	91.5	92.4	m	
23.0 19.50 PW9006A 2 467 8 40 70.8 83.7 87.7 14.10 13.20 PW306A 2 4.67 8 40 70.8 83.2 87.7 14.10 13.20 JT15D-4D 2 2.50 2.68 10 30 86.3 88.2 87.3 15.78 14.20 JT15D-4D 2 2.50 2.68 10 30 86.6 87.3 88.7 88.7 89.7 15.78 14.20 JT15D-4D 2 2.50 2.68 10 30 86.6 87.3 89.7 89.7 89.7 92.0 88.8 89.7 89.8 99.7 92.0 92.0 92.0 92.0 93.0 88.9 89.7 92.0 9	35C 55C	21.50	18.00	1FE/31-3AR-2B TFE/31-3AR-2B	7 2	3.90	2.90	50 20	40 40	86.2	90.9	92.4 92.4	n m	
15.50 13.20 FUNDAL 2 2.50 2.68 10 30 68.3 88.7 87.7 15.50 13.20 1150-40 2 2.50 2.68 10 30 68.12 88.4 88.7 15.50 13.20 1150-42-A 2 2.50 2.68 10 30 68.12 88.4 88.7 15.50 15.50 15.50 15.50 15.50 2.50 2.68 0 30 68.12 88.4 88.9 21.70 15.50 15.50 15.50 15.50 15.50 2.50 2.68 0 30 68.12 88.7 8.7 21.70 15.50 15.50 15.50 2.70 0 45 88.0 8.7 9.7 21.70 20.00 15.50 2.70 0 45 88.2 8.7 9.7 21.70 20.00 15.50 2.70 0 45 88.2 9.7 22.50	09	23.10	19.50	PW305A	2 0	4.67		∞ (40	70.8	83.1	87.7	m (
15.50 13.20 1715D-4D 2 2.50 2.68 0 30 81.2 88.4 85.8 87.9 11.5 12.50 11.60 1715D-4D 2 2.50 2.10 10 30 816 97.9 91.4 12.50 11.60 1715D-4.H 2 2.30 2.70 0 45 84.2 87.9 92.8 21.70 20.00 17E731-3-1H 2 3.70 2.70 0 45 84.2 90.1 96.0 21.70 20.00 17E731-3-1H 2 3.70 2.70 0 45 84.2 90.1 96.0 22.60 20.00 17E731-3-1H 2 3.70 2.70 0 45 84.2 90.1 96.0 22.60 22.00 17E731-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 89.5 89.8 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 89.5 89.8 22.50 22.00 17E731-3-1H 2 3.70 2.70 0 45 89.0 89.2 96.5 22.50 22.00 17E731-3-H 2 3.70 2.70 0 45 89.0 89.2 96.5 22.50 22.50 17E731-3-H 2 3.70 2.70 0 45 89.0 89.2 96.5 22.50 22.50 17E731-3-H 2 3.30 2.70 0 4.5 89.0 89.2 22.50 22.50 17E731-3-H 2 3.30 2.20 4.50 0 5.50 4.50 0 5.50 9.50 22.50 22.50 17E74 8 2 3.30 0 4.50 0 5.50 9.50 9.50 22.70 22.50 17E731-3-H 2 3.30 0 4.50 0 5.50 9.50 9.50 22.70 22.50 17E731-3-H 2 3.30 0 4.50 0 5.50 9.50 9.50 22.70 22.50 17E731-3-H 2 3.30 0 4.50 0 5.50 9.50 9.50 9.50 22.50 22.50 17E731-3-H 2 3.30 0 4.50 0 5.50 9.50 9.50 9.50 9.50 22.50 22.50 17E731-3-H 2 3.30 0 4.50 0 5.50 9.50 9.50 9.50 9.50 9.50 22.50 22.50 17E731-3-H 2 3.30 0 4.50 0 5.50 9.50	60 MT-300 (DIAMOND 1)	23.50	19.50	PW305A .1T15D-4	~ ~	7.50	2.68	8 Ç	30	70.8	83.2	87.7	m m	
15.78 14.2	MU-300 (DIAMOND I)	15.50	13.20	JT15D-4D	2	2.50	2.68	0	30	81.2	88.4	85.8	nm	
2.0.0 2.1.3.0 TFE731-5R-1H 2 4.30 3.30 45 81.4 87.3 95.0 21.70 19.60 TFE731-3-1H 2 3.70 2.70 45 84.2 90.0 96.0 21.70 20.00 TFE731-3-1H 2 3.70 2.70 6 45 84.2 90.0 96.0 21.70 20.00 TFE731-3-1H 2 3.70 2.70 6 45 84.2 90.0 96.3 21.70 20.00 TFE731-3-1H 2 3.70 2.70 6 45 86.5 89.8 95.7 22.60 20.00 TFE731-3-1H 2 3.70 2.70 6 45 86.5 89.2 96.3 25.50 22.00 TFE731-3-1H 2 3.70 2.70 6 45 86.3 89.7 102.9 25.50 22.00 TFE731-3-1H 2 3.70 2.70 6 45 86.3 92.7 96	MU-300-10 (DIAMOND II)	15.78	14.22	JT15D-5 F144-2A	2 0	2.90	2.10	10	30	88.6	93.7	91.4	m r	
21.70 19.60 TEF231-3-1H 2 3.70 2.70 45 84.2 90.0 96.0 21.70 19.60 TEF231-3-1H 2 3.70 2.70 0 45 88.4 90.1 96.0 21.70 20.00 TEF231-3-1H 2 3.70 2.70 0 45 88.2 90.1 96.0 23.60 20.00 TEF231-3-1H 2 3.70 2.70 0 45 88.5 89.8 95.7 25.50 22.00 TEF231-3-1H 2 3.70 2.70 0 45 88.0 89.2 96.7 25.50 22.00 TEF231-3-1H 2 3.70 2.70 0 45 88.0 89.2 96.7 25.50 22.00 TEF231-3-1H 2 3.70 2.70 0 45 88.0 89.2 96.5 25.50 22.00 TEF231-3-1H 2 3.70 2.70 0 45 80.2 92.2	C-29A	28.00	23.35	TFE731-5R-1H	2 2	4.30	3.30	00	45	81.4	87.3	95.8	n m	
2.1.00 1FEX3-1-1.1 2 3.70 2.70 45 85.4 90.1 90.0 23.60 20.00 TFEX3-1-1.1 2 3.70 2.70 0 45 85.5 89.8 95.7 23.60 20.00 TFEX3-1-1.1 2 3.70 2.70 0 45 85.5 89.8 95.7 25.60 20.00 TFEX3-1-1.1 2 3.70 2.70 0 45 86.5 89.8 95.7 25.50 22.00 TFEX3-1-1.1 2 3.70 2.70 0 45 86.5 89.8 95.7 25.50 22.00 TFEX3-1-1.1 2 3.70 2.70 0 45 80.2 90.2 102.9 25.50 22.00 TFEX3-1-1.1 2 3.70 2.70 0 45 80.9 80.9 90.2 102.9 90.2 102.9 90.2 102.9 90.2 102.9 90.2 102.9 90.2 102.9	HAWKER 125- 1A	21.70	19.60	TFE731-3-1H	2 0	3.70	2.70	0 0	45	84.2	90.0	0.96	m	
23.60 20.00 TFF731-3-1H 2 3.70 2.70 0 45 85.5 89.8 95.7 25.60 22.00 TFF731-3-1H 2 3.70 2.70 0 45 86.5 89.8 95.7 25.50 22.00 TFF731-3-1H 2 3.70 2.70 0 45 80.2 96.2 96.2 25.50 22.00 TFF731-3-1H 2 3.70 2.70 0 45 80.9 95.7 102.9 25.50 22.00 TFF731-3-1H 2 3.70 2.70 0 45 80.9 95.7 102.9 25.50 22.00 TFF731-3-1H 2 3.70 2.70 0 45 80.9 96.5 96.5 27.40 23.35 TFF731-5R-1H 2 4.30 3.30 0 45 80.9 96.5 96.5 31.00 25.0 4.50 3.30 0 4.50 80.9 96.5 96.5	HAWKER 125- 1A HAWKER 125- 3A	21.70	20.00	IFE/31-3-1H TFE/31-3-1H	2 2	3.70	2.70	00	45 45	84.2	90.0	96.3	n m	
25.00 20.00 THET31-3-11 2 3.70 2.70 45 88.0 95.2 95.1 25.50 22.00 VIPER 601-22 2 3.70 2.70 0 45 88.0 89.2 96.2 25.50 22.00 TEF31-3-1H 2 3.70 2.70 0 45 88.0 89.2 96.3 25.50 22.00 TEF31-3-1H 2 3.70 2.70 0 45 80.9 89.2 96.3 27.40 23.35 TEF31-5R-1H 2 4.30 3.30 0 45 80.9 89.2 96.3 27.40 23.35 TEF31-5R-1H 2 4.30 3.30 0 45 80.9 89.5 96.3 31.00 25.00 PW305 2 4.30 3.30 0 45 80.9 89.5 96.5 31.75 11.2A-8 2 4.30 4.50 0 25 89.7 100.4 97.5 <t< td=""><td>HAWKER 125- 3A/RA HAWKER 125- 4,00A</td><td>23.60</td><td>20.00</td><td>TFE731-3-1H TFE731-3-1H</td><td>2 0</td><td>3.70</td><td>2.70</td><td>0 0</td><td>45</td><td>85.5</td><td>89.8</td><td>95.7</td><td>m m</td><td></td></t<>	HAWKER 125- 3A/RA HAWKER 125- 4,00A	23.60	20.00	TFE731-3-1H TFE731-3-1H	2 0	3.70	2.70	0 0	45	85.5	89.8	95.7	m m	
25.50 22.00 VIPER 601-22 2 3.65 0.00 45 92.3 99.2 102.9 25.50 22.00 TEF331-3-1H 2 3.70 2.70 0 45 91.6 92.1 96.0 25.50 22.00 TEF331-3-1H 2 3.70 2.70 0 45 80.9 80.2 96.2 27.40 23.35 TEF331-5R-1H 2 4.30 3.30 0 45 80.9 87.2 96.5 27.40 23.35 TEF331-5R-1H 2 4.30 3.30 0 45 80.9 87.2 96.5 31.00 25.00 PW305 2 5.20 4.50 0 25 81.8 85.9 91.6 17.50 14.00 JT12A-8 2 5.20 4.50 0 25 81.7 100.4 97.5 20.20 17.50 JT12A-8 2 3.30 2 24 95.0 100.1 92.4	HAWKER 125- 400A	25.50	22.00	TFE731-3-1H	2 2	3.70	2.70	00	45	88.0	89.2	96.3	n m	
25.50 22.00 TFF731.3-1H 2 3.70 2.70 0 45 91.6 92.1 96.0 25.50 22.00 TFF731-3-1H 2 3.70 2.70 0 45 88.0 89.2 96.3 27.40 23.35 TFF731-5R-1H 2 4.30 3.30 0 45 80.9 89.5 96.3 27.40 23.35 TFF731-5R-1H 2 4.30 3.30 0 45 80.9 89.5 96.5 31.00 25.00 PW305 2 5.20 4.50 0 25 81.8 85.3 91.6 35.00 14.00 1712A-8 2 3.30 0 25 89.7 100.4 97.5 20.20 1750 1712A-8 2 3.30 0 25 89.7 100.1 98.4 20.20 1750 20.60 1712A-8 2 3.30 0 25 94.5 100.1 91.3 100.	HAWKER 125- 600A	25.50	22.00	VIPER 601-22	5	3.65	0.00	0	45	92.3	99.2	102.9	2	
27.40 23.35 TFE731-5R-1H 2 4.30 3.30 0 45 80.9 87.2 96.5 27.40 23.35 TFE731-5R-1H 2 4.30 3.30 0 45 80.9 87.2 96.5 31.00 25.00 PW305 2 5.20 4.50 0 25 81.8 85.0 96.5 96.5 31.00 25.00 PW305 2 5.20 4.50 0 25 81.8 85.0 96.5 91.6 31.00 20.20 17.50 17.12A-8 2 3.30 0 25 89.7 100.4 97.5 20.20 17.50 17.12A-8 2 3.30 0 25 94.5 100.1 98.4 20.20 17.14A-8 2 3.30 2 3.70 2.80 0 24.5 95.0 100.3 96.5 22.70 21.80 17E731-3R 2 3.70 2.80 0 24.4 <td>HAWKER 125- 700A HAWKER 125- 700A</td> <td>25.50</td> <td>22.00</td> <td>TFE731-3-1H TFE731-3-1H</td> <td>2 2</td> <td>3.70</td> <td>2.70</td> <td>0 0</td> <td>45 45</td> <td>91.6</td> <td>92.1</td> <td>96.3</td> <td>2 6</td> <td></td>	HAWKER 125- 700A HAWKER 125- 700A	25.50	22.00	TFE731-3-1H TFE731-3-1H	2 2	3.70	2.70	0 0	45 45	91.6	92.1	96.3	2 6	
27.40 23.35 TFE731-5R-1H 2 4.30 3.30 0 45 80.9 89.6 96.5 31.00 25.00 PW305 2 5.20 4.50 0 25 81.8 85.7 85.9 91.6 35.50 25.00 17.50 1712A-8 2 3.30 0 25 89.7 100.4 97.5 20.20 17.50 1712A-8 2 3.30 0 25 94.5 100.1 98.4 20.20 17.50 1712A-8 2 3.30 0 25 94.5 100.1 98.5 20.20 1712A-8 2 3.30 0 26 94.5 100.1 98.4 22.70 20.80 1712A-8 2 3.70 2.80 0 94.4 100.0 10.2.2 22.70 2.180 17E731-3R 2 3.70 2.80 0 36.4 90.6 23.00 2.200 CF700-2D-2 2	HAWKER 125-800	27.40	23.35	TFE731-5R-1H	5	4.30	3.30	0	45	80.9	87.2	96.5	m	
3.5.00 2.0.00 17.50 <	HAWKER 125- 800A HAWKER 125-1000	27.40	23.35	TFE731-5R-1H DW306	2 0	4.30	3.30	0 0	45 25	80.9	89.6	96.5	m r	
17.50 14.00 JT12A-8 2 3.30 0 25 89.7 100.4 97.5 20.20 17.50 17.54-8 2 3.30 0 25 94.5 100.4 97.5 20.20 17.54-8 2 3.30 2 9.5 100.1 98.4 22.70 20.60 JT12A-8 2 3.70 2.80 0 94.4 100.0 102.2 22.70 21.80 TFE731-3R 2 3.70 2.80 0 36 82.3 93.0 90.6 22.70 21.80 TFE731-3R 2 3.70 2.80 0 36 82.3 93.1 90.6 23.70 21.80 TFE731-3R 2 4.50 2.00 15 25 90.7 91.3 100.2 23.30 22.00 CF700-2D-2 2 4.50 2.00 15 91.3 100.2 25.50 22.00 CF700-2D-2 2 4.50 <t< th=""><th>HAWKER 125-1000</th><th>35.50</th><th>28.50</th><th>F W305 PW305</th><th>2 2</th><th>5.20</th><th>4.50</th><th>00</th><th>52</th><th>85.7</th><th>85.3</th><th>92.0</th><th>ი ო</th><th></th></t<>	HAWKER 125-1000	35.50	28.50	F W305 PW305	2 2	5.20	4.50	00	52	85.7	85.3	92.0	ი ო	
20.20 17.30 27.30 <th< th=""><th>SABRELINER 40</th><th>17.50</th><th>14.00</th><th>JT12A-8</th><th>2 5</th><th>3.30</th><th></th><th>0 0</th><th>25</th><th>89.7</th><th>100.4</th><th>97.5</th><th>2</th><th></th></th<>	SABRELINER 40	17.50	14.00	JT12A-8	2 5	3.30		0 0	25	89.7	100.4	97.5	2	
22.70 20.60 JT12A-8 2 3.30 0 94.4 100.0 102.2 24.00 21.80 TFF731-3R 2 3.70 2.80 0 36 84.0 93.0 90.6 22.00 21.80 TFF731-3R 2 4.50 2.00 15 25 90.7 91.3 100.2 23.00 22.00 CF700-2D-2 2 4.50 2.00 15 25 90.7 91.3 100.2 25.50 22.00 CF700-2D-2 2 4.50 2.00 0 91.2 91.4 101.1	SABRELINER 60	20.20	06:11	J112A-8 J112A-8	2 2	3.30		>	24	94.9	100.3	98.5	2 2	
24,00 21.80 TFE731-3R 2 3.70 2.80 84,0 93.0 90.6 22.70 21.80 TE731-3R 2 3.70 2.80 0 36 82.3 93.1 90.6 22.07 CF700-2D-2 2 4.50 2.00 15 25 90.7 91.3 100.2 23.30 22.00 CF700-2D-2 2 4.50 2.00 0 91.7 91.3 100.2 25.50 22.00 CF700-2D-2 2 4.50 2.00 0 91.2 91.4 101.1	SABRELINER 60A/60SC	22.70	20.60	JT12A-8	2	3.30		0		94.4	100.0	102.2	2	
23.00 CF700-2D-2 2 4.50 2.00 15 25 90.7 91.3 100.2 23.30 22.00 CF700-2D-2 2 4.50 2.00 90.7 91.3 100.2 25.50 22.00 CF700-2D-2 2 4.50 2.00 0 91.2 91.4 101.1	SABRELINER 65 SABRELINER 65	24.00 22.70	21.80 21.80	TFE731-3R TFE731-3R	2 2	3.70	2.80	0	36	84.0 82.3	93.0 93.1	90.6 90.6	m m	
25.30 22.00 CF700-2D-2 2 4.50 2.00 0 91.2 91.4 101.1	SABRELINER 75A	23.00	0	CF700-2D-2	2 0	4.50	2.00	15	25	90.7	91.3	100.2	2	
	SABRELINER 80 SABRELINER 80A/80SC	23.30	22.00	CF/00-2D-2 CF700-2D-2	N N	4.50 4.50	2.00	0		90./ 91.2	91.3 91.4	100.2 101.1	2 2	

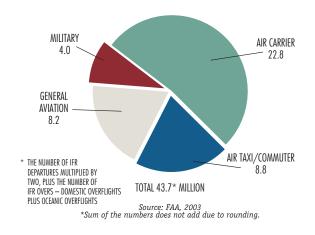
Business Aviation Industry Statistics

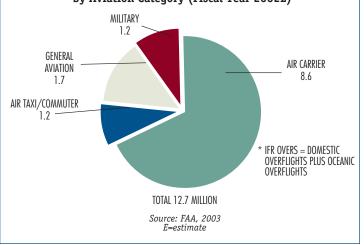

General Aviation and Air Traffic

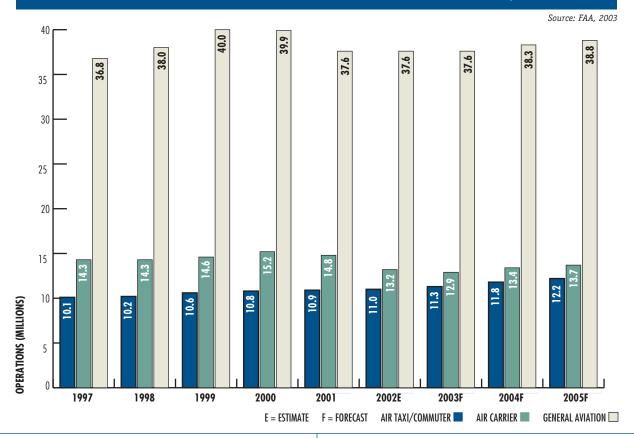
In 2002, total estimated operations at airports with FAA and contract air traffic control service was around 65 million. Air carrier hours were down more than 10 percent in 2002. Air taxi/commuter operations increased 1.4 percent in 2002, while the number of general aviation operations was virtually unchanged.


General aviation accounts for almost 40 percent of the 50 million instrument operations at FAA facilities each year, the largest share of any segment of aviation. By comparison, air carriers account for 29 percent of instrument operations, air taxis 24 percent, and military aviation less than 7 percent of the total.

In terms of aircraft under instrument flight rules (IFR) handled by FAA Air Route Traffic Control Centers (ARTCCs), air carriers account for more than half of the total. General aviation accounts for approximately 19 percent of the instrument aircraft handled by ARTCCs. Air taxis account for more than 20 percent of the instrument aircraft handled by ARTCCs. About 9 percent of the instrument aircraft handled by those facilities are military. Air carriers also perform nearly half the IFR departures each year, with general aviation accounting for approxi-


INSTRUMENT OPERATIONS (Millions) AT FAA FACILITIES by Aviation Category (Fiscal Year 2002E)


IFR DEPARTURES (Millions) HANDLED AT FAA FACILITIES by Aviation Category (Fiscal Year 2002E)


IFR AIRCRAFT (Millions) HANDLED AT ATC CENTERS* by Aviation Category (Fiscal Year 2002E)

TOTAL IFR OVERS (Millions) HANDLED AT ATC CENTERS* by Aviation Category (Fiscal Year 2002E)

TOTAL COMBINED AIRCRAFT OPERATIONS AT AIRPORTS WITH FAA AND CONTRACT AIR TRAFFIC CONTROL SERVICE, 1997–2005

mately 21 percent of such operations. Air taxis accounted for about 24 percent of IFR departures in 2002.

Satellite communication and navigation are becoming the systems of the future for air traffic service and will reflect a significant shift in how air travel occurs. Currently, the internationally accepted Global Navigation Satellite System (GNSS) will be made up essentially of the U.S. Department of Defense Global Positioning System (GPS) and various augmentations. Traffic no longer will be tied to navigating between points that currently are more apt to be dictated by land-lease agreements than route efficiencies. As air traffic service begins to take advantage of the benefits satellite systems can provide, as well as a comprehensive redesign of the airspace by the FAA, efficiencies will begin to accrue to the industry in terms of safety, time and money.

Such efficiencies will be found in all air traffic environments: terminal, enroute domestic, oceanic, all altitudes, airport surface and approaches (at least to Category I minima and possibly lower) as well as departures. As experience with new techniques brings about increased trust and acceptance by controlling agencies, the airspace user can expect to see a phasing out of a ground-based navigational system that has remained essentially unchanged since the 1940s.

NBAA-Government Interaction and Congressional Oversight of Business Aviation

Since 1947, one of NBAA's key functions has been to promote and protect the interests of Member Companies and the entire business aviation community through effective interaction with Federal, state and local government.

Specifically, the Association serves as a liaison between NBAA Member Companies and the Executive Branch, including the White House and various Federal agencies, as well as governors, state legislatures and municipal authorities throughout the United States. The Association also represents business aviation before the U.S. Congress, with particular emphasis on committees that have jurisdiction over issues affecting business aviation.

As the Congress focuses on aviation security, system management, modernization and funding, and other measures important to the business aviation community, NBAA's role in the legislative process has never been more important. It is essential that those in the business aviation community participate in that process by communicating with their elected officials, especially members of Congress. This section contains a list of leaders of relevant legislative committees and subcommittees, as well as the entire Congressional membership, for quick reference.

For assistance in communicating with Federal, state and local officials, contact Pete West, NBAA senior vice president, government & public affairs, at (202) 783-9262, via fax to (202) 331-8364, or via e-mail to pwest@nbaa.org.

U.S. SENATE

Committee and Subcommittee Chairs and Ranking Minority Members

COMMITTEE ON APPROPRIATIONS

The Honorable Ted Stevens (R-AK), Chairman S-128 Capitol Building
Washington, DC 20510-6025

Washington, DC 20510-6025

Tel: (202) 224-7363; Fax: (202) 224-8553 Web: www.senate.gov/~appropriations

The Honorable Robert Bryd (D-WV), Ranking Member

S-146A Capitol Building Washington, DC 20510 Tel: (202) 224-3471

Subcommittee on Transportation & Related Agencies

The Honorable Richard C. Shelby (R-AL), Chairman

SD-142 Dirksen SOB Washington, DC 20510

Tel: (202) 224-2175

Web: www.senate.gov/~appropriations/transportation

The Honorable Patt Murray (D-WA), Ranking Member

SD-135 Dirksen SOB Washington, DC 20510 Tel: (202) 224-7281

COMMITTEE ON COMMERCE, SCIENCE & TRANSPORTATION

The Honorable John McCain (R-AZ), Chairman

SD-254 Russell Dirkson SOB

Washington, DC 20510 Tel: (202) 224-1251

Fax: (202) 228-0303

Web: www.senate.gov/~commerce

The Honorable Ernest F. Hollings (D-SC),

Ranking Member SD-560 Dirksen SOB Washington, DC 20510 Tel: (202) 224-5115

Fax: (202) 224-1259

Subcommittee on Aviation

The Honorable Chairman Trent Lott (R-MS)

SD-560 Dirkson SOB Washington, DC 20510 Tel: (202) 224-4852

Fax: (202) 228-2339

The Honorable John D. "Jay" Rockefeller IV (D-WV)

Ranking Member SH-428 Hart SOB Washington, DC 20510 Tel: (202) 224-9000

COMMITTEE ON FINANCE

The Honorable Chuck Grassley (R-IA), Chairman

SD-219 Dirksen SOB Washington, DC 20510 Tel: (202) 224-4515 Fax: (202) 228-0554

The Honorable Max Baucus (D-MT), Ranking Member

SD-219 Dirksen SOB Washington, DC 20510 Tel: (202) 224-5315 Fax: (202) 228-1703

U.S. HOUSE OF REPRESENTATIVES

Committee and Subcommittee Chairs and Ranking Minority Members

COMMITTEE ON APPROPRIATIONS

The Honorable C. W. "Bill" Young (R-FL), Chairman H-218 Capitol Building Washington, DC 20515

Tel: (202) 225-2771

The Honorable David Obey (D-WI), Ranking Member 1016 Longworth HOB

Washington, DC 20515 Tel: (202) 225-3481

Subcommittee on Transportation & Related Agencies

The Honorable Harold Rogers (R-KY), Chairman 2358 Rayburn HOB Washington, DC 20515

Tel: (202) 225-2141

The Honorable Martin Olav Sabo (D-MN)

Ranking Member 1016 Longworth HOB Washington, DC 20515 Tel: (202) 225-3481

COMMITTEE ON TRANSPORTATION & INFRASTRUCTURE

The Honorable Don Young (R-AK), Chairman

2165 Rayburn HOB Washington, DC 20515 Tel: (202) 225-9446 Fax: (202) 225-6782

Web: www.house.gov/transportation

The Honorable James L. Oberstar (D-MN)

Ranking Member 2163 Rayburn HOB Washington, DC 20515 Tel: (202) 225-4472 Fax: (202) 226-1270

Subcommittee on Aviation

The Honorable John L. Mica (R-FL), Chairman

2251 Rayburn HOB Washington, DC 20515 Tel: (202) 226-3220 Fax: (202) 225-4629

The Honorable William O. Lipinski (D-IL)

Ranking Member 2251 Rayburn HOB

Washington, DC 20515-6256

Tel: (202) 225-9161

COMMITTEE ON WAYS & MEANS

The Honorable William M. Thomas (R-CA), Chairman

1102 Longworth HOB Washington, DC 20515 Tel: (202) 225-3625

The Honorable Charles B. Rangel (D-NY)

Ranking Member 1106 Longworth HOB Washington, DC 20515 Tel: (202) 225-4021

U.S. SENATE MEMBER LISTING

Member	Darty/	Poom/	Dhono	Fav
Name	Party/ State	Room/ Building	Phone (202)	Fax (202)
Akaka, Daniel K.	D-HI	SH-141	224-6361	(202) 224-2126
Alexander, Lamar	R-TN	SD-B40-2	224-4944	228-3398
Allard, Wayne	R-CO	SD-525	224-5941	224-6471
Allen, George	R-VA	SR-204	224-4024	224-5432
Baucus, Max	D-MO	SH-511	224-2651	228-3687
Bayh, Evan	D-IN	SR-463	224-5623	228-1377
Bennett, Robert F.	R-UT	SD-431	224-5444	228-1168
Biden, Joseph R.	D-DE	SR-221	224-5042	224-0139
Bingaman, Jeff	D-NM	SH-703	224-5521	224-2852
Bond, Christopher "Kit"	R-MO	SR-274	224-5721	224-8149
Boxer, Barbara	D-CA	SH-112	224-3553	
Breaux, John B.	D-LA	SH-503	224-4623	228-2577
Brownback, Sam	R-KS	SH-303	224-6521	228-1265
Bunning, Jim	R-KY	SH-316	224-4343	228-1373
Burns, Conrad	R-MO	SD-187	224-2644	224-8594
Byrd, Robert C.	D-WV	SH-311	224-3954	228-0002
Campbell, Ben Nighthorse	R-CO	SR-380	224-5852	224-1933
Cantwell, Maria	D-WA	SH-717	224-3441	228-0514
Carper, Thomas R.	D-DE	SH-513	224-2441	228-2190
Chafee, Lincoln D.	R-RI	SR-141A	224-2921	228-2853
Chambliss, Saxby	R-GA	SR-Courtyard 2		224-0072
Clinton, Hillary Rodham	D-NY	SR-476	224-4451	228-0282
Cochran, Thad	R-MS	SD-113	224-5054	224-9450
Coleman, Norm	R-MN	SD-B40-3	224-5641	224-1152
Collins, Susan M.	R-ME	SR-172	224-2523	224-2693
Conrad, Kent	D-ND	SH-530	224-2043	224-7776
Cornyn, John	R-TX	SR-Courtyard 5		228-2856
Corzine, Jon S.	D-NJ	SH-502	224-4744	228-2197
Craig, Larry E.	R-ID	SH-520	224-2752	228-1067
Crapo, Michael D.	R-ID	SR-111	224-6142	22/ 6602
Daschle, Tom	D-SD D-MN	SH-509	224-2321	224-6603
Dayton, Mark		SR-346	224-3244	228-2186
DeWine, Mike Dodd, Christopher J.	R-OH D-CT	SR-140 SR-448	224-2315 224-2823	224-6519 224-1083
Dole, Elizabeth H.	R-NC	SD-B34	224-6342	224-1003
Domenici, Pete V.	R-NM	SH-328	224-6621	224-1100
Dorgan, Byron L.	D-ND	SH-713	224-2551	224-1193
Durbin, Richard J.	D-IL	SD-332	224-2152	228-0400
Edwards, John	D-NC	SD-225	224-3154	228-1374
Ensign, John	R-NV	SR-364	224-6244	228-2193
Enzi, Michael B.	R-WY	SR-290	224-3424	228-0359
Feingold, Russell D.	D-WI	SH-506	224-5323	224-2725
Feinstein, Dianne	D-CA	SH-331	224-3841	228-3954
Fitzgerald, Peter G.	R-IL	SD-555	224-2854	228-1372
Frist, Bill	R-TN	SR-416	224-3344	228-1264
Graham, Bob	D-FL	SH-524	224-3041	224-2237
Graham, Lindsey	R-SC	SR-Courtyard 1	224-5972	224-1189
Grassley, Charles E.	R-IA	SH-135	224-3744	224-6020
Gregg, Judd	R-NH	SR-393	224-3324	224-4952
Hagel, Chuck	R-NE	SR-248	224-4224	224-5213
Harkin, Tom	D-IA	SH-731	224-3254	224-9369
Hatch, Orrin G.	R-UT	SH-104	224-5251	224-6331
Hollings, Ernest F.	D-SC	SR-125	224-6121	224-4293
Hutchison, Kay Bailey	R-TX	SR-284	224-5922	224-0776
Inhofe, James M.	R-OK	SR-453	224-4721	228-0380
Inouye, Daniel K.	D-HI	SH-722	224-3934	
Jeffords, James M.	I-VT	SD-413	224-5141	228-0776

Member Name	Party/ State	Room/ Building	Phone (202)	Fax (202)
Johnson, Tim	D-SD	SH-324	224-5842	228-5765
Kennedy, Edward M.	D-MA	SR-317	224-4543	224-2417
Kerry, John F.	D-MA	SR-304	224-2742	224-8525
Kohl, Herb	D-WI	SH-330	224-5653	224-9787
Kyl, Jon	R-AZ	SH-730	224-4521	224-2207
Landrieu, Mary L.	D-LA	SH-724	224-5824	224-9735
Lautenberg, Frank R.	D-NJ	SH-825A	224-3224	228-4054
Leahy, Patrick J.	D-VT	SR-433	224-4242	224-3479
Levin, Carl	D-MI	SR-269	224-6221	224-1388
Lieberman, Joseph I.	D-CT	SH-706	224-4041	
Lincoln, Blanche Lambert	D-AK	SD-355	224-4843	228-1371
Lott, Trent	R-MS	SR-487	224-6253	224-2262
Lugar, Richard G.	R-IN	SH-306	224-4814	228-0360
McCain, John	R-AZ	SR-241	224-2235	228-2862
McConnell, Mitch	R-KY	SR-361A	224-2541	224-2499
Mikulski, Barbara A.	D-MD	SH-709	224-4654	224-8858
Miller, Zell	D-GA	SD-257	224-3643	228-2090
Murkowski, Lisa	R-AK	SH-322	224-6665	224-5301
Murray, Patty	D-WA	SR-173	224-2621	224-0238
Nelson, Bill	D-FL	SH-716	224-5274	228-2183
Nelson, Ben	D-NE	SH-720	224-6551	228-0012
Nickles, Don	R-OK	SH-133	224-5754	224-6008
Pryor, Mark	D-AK	SH-825	224-2353	228-0908
Reed, Jack	D-RI	SH-320	224-4642	224-4680
Reid, Harry	D-NV	SH-528	224-3542	224-7327
Roberts, Pat	R-KS	SH-302	224-4774	224-3514
Rockefeller, John D. "Jay"	D-WV	SH-531	224-6472	224-7665
Santorum, Rick	R-PA	SR-120	224-6324	228-0604
Sarbanes, Paul S.	D-MD	SH-309	224-4524	224-1651
Schumer, Charles E.	D-NY	SH-313	224-6542	228-3027
Sessions, Jeff	R-AL	SR-493	224-4124	224-3149
Shelby, Richard C.	R-AL	SH-110	224-5744	224-3416
Smith, Gordon H.	R-OR	SR-404	224-3753	228-3997
Snowe, Olympia J.	R-ME	SR-154	224-5344	224-1946
Specter, Arlen	R-PA	SH-711	224-4254	228-1229
Stabenow, Debbie	D-MI	SH-702	224-4822	228-0325
Stevens, Ted	R-AL	SH-522	224-3004	224-2354
Sununu, John E.	R-NH	SR-Courtyard 4	224-2841	228-4131
Talent, James M.	R-MO	SH-517	224-6154	228-1518
Thomas, Craig	R-WY	SH-109	224-6441	224-1724
Voinovich, George V.	R-OH	SH-317	224-3353	228-1382
Warner, John	R-VA	SR-225	224-2023	224-6295
Wyden, Ron	D-OR	SH-516	224-5244	228-2717

U.S. HOUSE OF REPRESENTATIVES MEMBER LISTING

Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)
Abercrombie, Neil	D	HI01	1502 LH0B	225-2726	225-4580
	D	PR01	126 CHOB	225-2615	225-2154
Ackerman, Gary L.	D	NY05	2243 RH0B	225-2601	225-1589
Aderholt, Robert B.	R	AL04	1433 LHOB	225-4876	225-5587
Akin, W. Todd	R	M002	117 CHOB	225-2561	225-2563
Alexander, Rodney M. Allen, Thomas H.	D D	LA05 ME01	316 CHOB 1717 LHOB	225-8490 225-6116	225-5639 225-5590
Andrews, Robert E.	D	NJ01	2439 RHOB	225-6501	225-6583
Baca, Joe	D	CA43	328 CHOB	225-6161	225-8671
Bachus, Spencer	R	AL06	442 CHOB	225-4921	225-2082
Baird, Brian	D	WA03	1421 LH0B	225-3536	225-3478
Baker, Richard	R	LA06	341 CHOB	225-3901	225-7313
Baldwin, Tammy	D	WI02	1022 LH0B	225-2906	225-6942
Ballance, Frank W.	D	NC01	413 CHOB	225-3101	225-3354
Ballenger, Cass	R	NC10	2182 RH0B	225-2576	225-0316
Barrett, James G.	R	SC03	1523 LH0B	225-5301	225-3216
Bartlett, Roscoe G.	R R	MD06	2412 RHOB	225-2721	225-2193
Barton, Joe Bass, Charles F.	R R	TX06 NH02	2109 RH0B 2421 RH0B	225-2002 225-5206	225-3052 225-2946
Beauprez, Bob	R	C007	511 CHOB	225-2645	225-2940
Becerra, Xavier	D	CA31	1119 LHOB	225-6235	225-2202
Bell, Chris	D	TX25	216 CHOB	225-7508	225-2947
Bereuter, Doug	R	NE01	2184 RH0B	225-4806	
Berkley, Shelley	D	NV01	439 CHOB	225-5965	225-3119
Berman, Howard L.	D	CA28	2221 RH0B	225-4695	225-3196
Berry, Marion	D	AR01	1113 LH0B	225-4076	225-5602
Biggert, Judy	R	IL13	1213 LH0B	225-3515	225-9420
Bilirakis, Michael	R	FL09	2269 RH0B	225-5755	225-4085
Bishop, Rob	R	UT01	124 CHOB	225-0453	225-5857
Bishop, Sanford D.	D D	GA02	2429 RHOB	225-3631	225-2203
Bishop, Timothy Blackburn, Marsha	R	NY01 TN07	1133 LHOB 509 CHOB	225-3826 225-2811	225-3143 225-2989
Blumenauer, Earl	D	0R03	2446 RHOB	225-2811	225-2969
Blunt, Roy	R	M007	217 CHOB	225-6536	225-5604
Boehlert, Sherwood	R	NY24	2246 RHOB	225-3665	225-1891
Boehner, John A.	R	0H08	1011 LH0B	225-6205	225-0704
Bonilla, Henry	R	TX23	2458 RH0B	225-4511	225-2237
Bonner, Jo	R	AL01	315 CHOB	225-4931	225-0562
Bono, Mary	R	CA45	404 CHOB	225-5330	225-2961
Boozman, John	R	AK03	1708 LH0B	225-4301	225-5713
Bordallo, Madeleine	D	GU01	427 CHOB	225-1188	226-0341
Boswell, Leonard L.	D	IA03	1427 LHOB	225-3806	225-5608
Boucher, Rick Boyd, Allen	D D	VA09 FL02	2187 RHOB 107 CHOB	225-3861 225-5235	225-0442 225-5615
Bradley, Jeb	R	NH01	107 CHOB 1218 LHOB	225-5456	225-5015
Brady, Kevin	R	TX08	428 CHOB	225-4901	225-5524
Brady, Robert A.	D	PA01	206 CHOB	225-4731	225-0088
Brown, Corrine	D	FL03	2444 RH0B	225-0123	225-2256
Brown, Henry	R	SC01	1124 LH0B	225-3176	225-3407
Brown, Sherrod	D	0H13	2332 RH0B	225-3401	225-2266
Brown-Waite, VA	R	FL05	1516 LH0B	225-1002	226-6559
Burgess, Michael C.	R	TX26	1721 LH0B	225-7772	225-2919
Burns, Max	R	GA12	512 CHOB	225-2823	225-3377
Burr, Richard	R	NC05	1526 LH0B	225-2071	225-2995
Burton, Dan	R	INO5	2185 RHOB	225-2276	225-0016
Buyer, Steve	R R	IN04	2230 RHOB	225-5037	225-2267
Calvert, Ken Camp, Dave	R R	CA44 MI04	2201 RH0B 137 CH0B	225-1986 225-3561	225-2004 225-9679
Cannon, Chris	R	UT03	137 CHOB 118 CHOB	225-3501	225-5629
Cantor, Eric I.	R	VA07	329 CHOB	225-2815	225-0011
	R	WV02	1431 LHUB	225-2/11	225-/85h
Capito, Shelley Moore Capps, Lois	R D	WV02 CA23	1431 LH0B 1707 LH0B	225-2711 225-3601	225-7856 225-5632

Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)
Cardin, Benjamin L.	D	MD03	2207 RH0B	225-4016	225-9219
Cardoza, Dennis	D	CA18	503 CHOB	225-6131	225-0819
Carson, Julia M.	D	IN07	1535 LH0B	225-4011	225-5633
Carson, Brad	D	0K02	317 CHOB	225-2701	225-3038
Carter, John R.	R	TX31	408 CHOB	225-3864	225-5886
Case, Ed	D	HI02	128 CHOB	225-4906	225-4987
Castle, Michael N.	R	DE01	1233 LH0B	225-4165	225-2291
Chabot, Steve Chocola, Chris	R R	0H01 IN02	129 CHOB 510 CHOB	225-2216 225-3915	225-3012 225-6798
Christian-Christensen		11102	510 CHOB	225-3915	223-0790
Donna M.	, D	VI01	1510 LH0B	225-1790	225-5517
Clay, William Lacy	D	M001	131 CHOB	225-2406	225-1725
Clyburn, James E.	D	SC06	2135 RH0B	225-3315	225-2313
Coble, Howard	R	NC06	2468 RH0B	225-3065	225-8611
Cole, Tom	R	0K04	501 CHOB	225-6165	225-3512
Collins, Mac	R	GA08	1131 LH0B	225-5901	225-2515
Combest, Larry	R	TX19	1026 LH0B	225-4005	225-9615
Conyers, John Cooper, Jim	D D	MI14 TN05	2426 RH0B 1536 LH0B	225-5126 225-4311	225-0072 226-1035
Costello, Jerry F.	D	IL12	2454 RH0B	225-5661	225-0285
Cox, Christopher	R	CA48	2402 RHOB	225-5611	225-9177
Cramer, Bud	D	AL05	2368 RH0B	225-4801	225-4392
Crane, Philip M.	R	IL08	233 CHOB	225-3711	225-7830
Crenshaw, Ander	R	FL04	127 CHOB	225-2501	225-2504
Crowley, Joseph	D	NY07	312 CHOB	225-3965	225-1909
Cubin, Barbara	R	WY01	1114 LH0B	225-2311	225-3057
Culberson, John Cummings, Elijah E.	R D	TX07 MD07	1728 LH0B 1632 LH0B	225-2571 225-4741	225-4381 225-3178
Cunningham,	ע	וטעויו	1032 LHOB	225-4741	223-3176
Randy "Duke"	R	CA50	2350 RH0B	225-5452	225-2558
Davis, Artur	D	AL07	208 CHOB	225-2665	226-0772
Davis, Danny K.	D	IL07	1222 LH0B	225-5006	225-5641
Davis, Jim	D	FL11	409 CHOB	225-3376	225-5652
Davis, Jo Ann S.	R	VA01	1123 LH0B	225-4261	225-4382
Davis, Lincoln	D	TN04	504 CHOB	225-6831	226-5172
Davis, Susan A. Davis, Tom	D R	CA53 VA11	1224 LH0B 2348 RH0B	225-2040 225-1492	225-2948 225-3071
Deal, Nathan	R	GA10	2437 RH0B	225-5211	225-8272
DeFazio, Peter A.	D	0R04	2134 RH0B	225-6416	225-0032
DeGette, Diana	D	C001	1530 LH0B	225-4431	225-5657
Delahunt, William D.	D	MA10	1317 LH0B	225-3111	225-5658
DeLauro, Rosa	D	CT03	2262 RH0B	225-3661	225-4890
DeLay, Tom	R	TX22	242 CHOB	225-5951	225-5241
DeMint, Jim	R	SC04	432 CHOB	225-6030	226-1177
Deutsch, Peter Diaz-Balart, Lincoln	D R	FL20 FL21	2303 RH0B 2244 RH0B	225-7931 225-4211	225-8456 225-8576
Diaz-Balart, Mario	R	FL25	313 CHOB	225-2778	226-0346
Dicks, Norman D.	D	WA06	2467 RH0B	225-5916	226-1176
Dingell, John D.	D	MI15	2328 RH0B	225-4071	226-0371
Doggett, Lloyd	D	TX10	201 CHOB	225-4865	225-3073
Dooley, Calvin M.	D	CA20	1201 LH0B	225-3341	225-9308
Doolittle, John T.	R	CA04	2410 RH0B	225-2511	225-5444
Doyle, Mike Dreier, David	D R	PA14 CA26	401 CHOB	225-2135 225-2305	225-3084
Duncan, John J.	R	TN02	237 CHOB 2267 RHOB	225-2305	225-7018 225-6440
Dunn, Jennifer	R	WA08	1501 LH0B	225-7761	225-8673
Edwards, Chet	D	TX11	2459 RHOB	225-6105	225-0350
Ehlers, Vernon J.	R	MI03	1714 LH0B	225-3831	225-5144
Emanuel, Rahm	D	IL05	1319 LH0B	225-4061	225-5603
Emerson, Jo Ann	R	M008	2440 RH0B	225-4404	
Engel, Eliot L.	D	NY17	2264 RH0B	225-2464	225 2422
English, Phil	R	PA03	1410 LHOB	225-5406	225-3103
Eshoo, Anna G. Etheridge, Bob	D D	CA14 NC02	205 CHOB 1533 LHOB	225-8104 225-4531	225-8890 225-5662
Evans, Lane	D	IL17th	2211 RHOB	225-5905	225-5396
Everett, Terry	R	AL02	2312 RHOB	225-2901	225-8913
Faleomavaega, Eni	D	AS01	2422 RH0B	225-8577	225-8757

Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)	Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)
Farr, Sam	D	CA17	1221 LH0B	225-2861	225-6791	Hulshof, Kenny	R	M009	412 CHOB	225-2956	225-5712
Fattah, Chaka	D	PA02	2301 RH0B	225-4001	225-5392	Hunter, Duncan L.	R	CA52	2265 RH0B	225-5672	225-0235
Feeney, Tom C.	R	FL24	323 CHOB	225-2706	226-6299	Hyde, Henry J.	R	IL06	2110 RH0B	225-4561	225-1166
Ferguson, Mike	R	NJ07	214 CHOB	225-5361	225-9460	Inslee, Jay	D	WA01	308 CHOB	225-6311	226-1606
Filner, Bob	D	CA51	2428 RH0B	225-8045	225-9073	Isakson, Johnny	R	GA06	132 CHOB	225-4501	225-4656
Flake, Jeff	R	AZ06	424 CHOB	225-2635	226-4386	Israel, Steve	D	NY02	429 CHOB	225-3335	225-4669
Fletcher, Ernie	R	KY06	1117 LHOB	225-4706	225-2122	Issa, Darrell	R	CA409	211 CHOB	225-3906	225-3303
Foley, Mark	R R	FL106	104 CHOB 307 CHOB	225-5792	225-3132	Istook, Ernest J. Jackson, Jesse	R D	0K05	2404 RHOB	225-2132 225-0773	226-1463
Forbes, J. Randy Ford, Harold E.	r D	VA04 TN09	307 CHOB 325 CHOB	225-6365 225-3265	226-1170 225-5663	Janklow, William	R	IL02 SD01	2419 RH0B 1504 LH0B	225-0773	225-0899 225-5823
Fossella, Vito J.	R	NY13	1239 LHOB	225-3203	226-1272	Jefferson, William J.		LA02	240 CHOB	225-6636	225-3823
Frank, Barney	D	MA04	2252 RH0B	225-5931	225-0182	Jenkins, William L.	R	TN01	1207 LHOB	225-6356	225-5714
Franks, Trent	R	AZ02	1237 LH0B	225-4576	225-6378	John, Chris	D	LA07	403 CHOB	225-2031	225-5724
Frelinghuysen,						Johnson, Eddie					
Rodney	R	NJ11	2442 RH0B	225-5034	225-3186	Bernice	D	TX30	1511 LHOB	225-8885	226-1477
Frost, Martin	D	TX24	2256 RH0B	225-3605	225-4951	Johnson, Nancy L.	R	CT05	2113 RHOB	225-4476	225-4488
Gallegly, Elton	R	CA24	2427 RHOB	225-5811	225-1100	Johnson, Sam	R	TX03	1211 LHOB	225-4201	225-1485
Garrett, Scott	R	NJ05	1641 LHOB	225-4465	225-9048	Johnson, Timothy V.	R	IL15	1229 LHOB	225-2371	226-0791
Gephardt, Richard A		M003	1236 LHOB	225-2671	225-7452	Jones, Stephanie Tubbs	n	OH11	1000 I HOD	225 7022	225 1220
Gerlach, Jim Gibbons, Jim	R R	PA06 NV02	1541 LHOB 100 CHOB	225-4315 225-6155	225-8440 225-5679	Jones, Walter B.	D R	OH11 NC03	1009 LHOB 422 CHOB	225-7032 225-3415	225-1339 225-3286
Gilchrest, Wayne T.	R	MD01	2245 RHOB	225-5311	225-0254	Kanjorski, Paul E.	D	PA11	2353 RHOB	225-6511	225-3260
Gillmor, Paul E.	R	0H05	1203 LH0B	225-6405	223 0231	Kaptur, Marcy	D	0H09	2366 RHOB	225-4146	225-7711
Gingrey, John P.	R	GA11	1118 LH0B	225-2931	225-2944	Keller, Ric	R	FL08	419 CHOB	225-2176	225-0999
Gonzalez, Charles A.	D	TX20	327 CHOB	225-3236	225-1915	Kelly, Sue	R	NY19	1127 LHOB	225-5441	225-3289
Goode, Virgil H.	R	VA05	1520 LH0B	225-4711	225-5681	Kennedy, Mark	R	MN06	1415 LHOB	225-2331	225-6475
Goodlatte, Robert W.		VA06	2240 RH0B	225-5431	225-9681	Kennedy, Patrick	D	RI01	407 CHOB	225-4911	225-3290
Gordon, Bart	D	TN06	2304 RHOB	225-4231	225-6887	Kildee, Dale E.	D	MI05	2107 RHOB	225-3611	225-6393
Goss, Porter J.	R	FL14	108 CHOB	225-2536	225-6820	Kilpatrick, Carolyn	ъ	MT42	4640 I IIOD	005 0064	005 5700
Granger, Kay Graves, Sam	R R	TX12 M006	435 CHOB 1513 LHOB	225-5071 225-7041	225-5683	Cheeks Kind, Ron	D D	MI13 WI03	1610 LHOB 1406 LHOB	225-2261 225-5506	225-5730 225-5739
Green, Gene	D	TX29	2335 RHOB	225-7041	225-8221 225-9903	King, Peter T.	R	W103	436 CHOB	225-3300	226-2279
Green, Mark	R	WI08	1314 LHOB	225-5665	225-5729	King, Steve	R	IA05	1432 LHOB	225-4426	225-3193
Greenwood, Jim	R	PA08	2436 RH0B	225-4276	225-9511	Kingston, Jack	R	GA01	2242 RHOB	225-5831	226-2269
Grijalva, Raul M.	D	AZ07	1440 LH0B	225-2435	226-6846	Kirk, Mark Steven	R	IL10	1531 LH0B	225-4835	225-0837
Gutierrez, Luis V.	D	IL04	2367 RH0B	225-8203	225-7810	Kleczka, Jerry	D	WI04	2217 RHOB	225-4572	225-8135
Gutknecht, Gil	R	MN01	425 CHOB	225-2472	225-3246	Kline, John P.	R	MN02	1429 LHOB	225-2271	225-2595
Hall, Ralph M.	D	TX04	2405 RH0B	225-6673	225-3332	Knollenberg, Joe	R	MI09	2349 RHOB	225-5802	226-2356
Harman, Jane	D	CA36	2400 RH0B	225-8220	226-7290	Kolbe, Jim	R	AZ08	2266 RH0B	225-2542	225-0378
Harris, Katherine Hart, Melissa	R R	FL13 PA04	116 CHOB 1508 LHOB	225-5015 225-2565	226-0828 226-2274	Kucinich, Dennis J. LaHood, Ray	D R	0H10 IL18	1730 LHOB 1424 LHOB	225-5871 225-6201	225-5745 225-9249
Hastert, J. Dennis	R	IL14	235 CHOB	225-2976	225-0697	Lampson, Nick	D	TX09	405 CHOB	225-6565	225-5547
Hastings, Alcee L.	D	FL23	2235 RH0B	225-1313	225-1171	Langevin, Jim	D	RIO2	109 CHOB	225-2735	225-5976
Hastings, Doc	R	WA04	1323 LH0B	225-5816	225-3251	Lantos, Tom	D	CA12	2413 RHOB	225-3531	
Hayes, Robin	R	NC08	130 CHOB	225-3715	225-4036	Larsen, Rick	D	WA02	1529 LHOB	225-2605	225-4420
Hayworth, J.D.	R	AZ05	2434 RH0B	225-2190	225-3263	Larson, John B.	D	CT01	1005 LH0B	225-2265	225-1031
Hefley, Joel	R	C005	2372 RH0B	225-4422	225-1942	Latham, Tom	R	IA04	440 CHOB	225-5476	225-3301
Hensarling, Jeb	R	TX05	423 CHOB	225-3484	226-4888	LaTourette, Steven C.		0H14	2453 RHOB	225-5731	225-3307
Herger, Wally Hill, Baron P.	R D	CA02 IN09	2268 RH0B 1024 LH0B	225-3076 225-5315	226-0852 226-6866	Leach, Jim Lee, Barbara	R D	IA02 CA09	2186 RH0B 1724 LH0B	225-6576 225-2661	226-1278 225-9817
Hinchey, Maurice D.		NY22	2431 RHOB	225-6335	226-0774	Lee, Sheila Jackson	D	TX18	2435 RHOB	225-2001	225-3317
Hinojosa, Rubén	D	TX15	2463 RH0B	225-2531	225-5688	Levin, Sander M.	D	MI12	2300 RHOB	225-4961	226-1033
Hobson, David L.	R	0Hh	2346 RH0B	225-4324		Lewis, Jerry	R	CA41	2112 RH0B	225-5861	225-6498
Hoeffel, Joseph M.	D	PA13	426 CHOB	225-6111	226-0611	Lewis, John	D	GA05	343 CHOB	225-3801	225-0351
Hoekstra, Peter	R	MI02	2234 RH0B	225-4401	226-0779	Lewis, Ron	R	KY02	2418 RH0B	225-3501	
Holden, Tim	D	PA17	2417 RH0B	225-5546	226-0996	Linder, John	R	GA07	1727 LHOB	225-4272	225-4696
Holt, Rush	D	NJ12	1019 LHOB	225-5801	225-6025	Lipinski, William O.	D	IL03	2188 RHOB	225-5701	225-1012
Honda, Michael M.	D	CA15	1713 LHOB	225-2631	225-2699	LoBiondo, Frank A.	R	NJ02	225 CHOB	225-6572	225-3318
Hooley, Darlene Hostettler, John N.	D R	0R05 IN08	2430 RH0B 1214 LH0B	225-5711 225-4636	225-5699	Lofgren, Zoe Lowey, Nita M.	D D	CA16 NY18	102 CHOB 2329 RHOB	225-3072 225-6506	225-3336
Houghton, Amo	R	NY29	1214 LHOB	225-4030	225-3284 225-5574	Lucas, Frank D.	R	0K03	2342 RHOB	225-5565	225-0546 225-8698
Hoyer, Steny H.	D	MD05	1705 LHOB	225-4131	225-4300	Lucas, Ken	D	KY04	1205 LHOB	225-3465	225-0093
						•					

_						WINAM ZUUJ	IACI DOOR					
	Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)	Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)
											•	
	Lynch, Stephen F.	D	MA09	319 CHOB	225-8273	225-3984	Payne, Donald M.	D	NJ10	2209 RHOB	225-3436	225-4160
	Majette, Denise	D	GA04	1517 LHOB	225-1605	226-0691	Pearce, Steve	R	NM02	1408 LH0B	225-2365	225-9599
	Maloney, Carolyn B. Manzullo, Donald	D R	NY14 IL16	2331 RH0B 2228 RH0B	225-7944 225-5676	225-4709 225-5284	Pelosi, Nancy Pence, Mike	D R	CA08 IN06	2371 RH0B 1605 LH0B	225-4965 225-3021	225-8259 225-3382
	Markey, Edward J.	D	MA07	2108 RHOB	225-2836	225-5264	Peterson, Collin C.	D	MN07	2159 RHOB	225-3021	225-3362
	Marshall, Jim	D	GA03	502 CHOB	225-6531	225-3013	Peterson, John E.	R	PA05	123 CHOB	225-5121	225-5796
	Matheson, Jim	D	UT02	410 CHOB	225-3011	225-5638	Petri, Thomas E.	R	WI06	2462 RHOB	225-2476	225-2356
	Matsui, Robert T.	D	CA05	2310 RH0B	225-7163	225-0566	Pickering, Charles W.		MS03	229 CHOB	225-5031	225-5797
	McCarthy, Carolyn	D	NY04	106 CHOB	225-5516	225-5758	Pitts, Joseph R.	R	PA16	204 CH0B	225-2411	225-2013
	McCarthy, Karen	D	M005	1436 LH0B	225-4535	225-4403	Platts, Todd	R	PA19	1032 LH0B	225-5836	226-1000
	McCollum, Betty	D	MN04	1029 LH0B	225-6631	225-1968	Pombo, Richard W.	R	CA11	2411 RH0B	225-1947	226-0861
	McCotter, Thaddeus	R	MI11	415 CHOB	225-8171	225-2667	Pomeroy, Earl	D	ND01	1110 LH0B	225-2611	226-0893
	McCrery, Jim	R	LA04	2104 RH0B	225-2777	225-8039	Porter, Jon	D	MILO	240 CHOD	225 2252	225 2405
	McDermott, Jim McGovern, James P.	D D	WA07 MA03	1035 LH0B 430 CH0B	225-3106 225-6101	225-6197 225-5759	Christopher Portman, Rob	R R	NV03 0H02	218 CHOB 238 CHOB	225-3252 225-3164	225-2185 225-1992
	McHugh, John M.	R	NY23	2333 RHOB	225-4611	226-0621	Price, David E.	D	NCO4	2162 RHOB	225-3104	225-1992
	McInnis, Scott	R	C003	320 CHOB	225-4761	226-0622	Pryce, Deborah	R	0H15	221 CHOB	225-2015	223-2014
	McIntyre, Mike	D	NCO7	228 CHOB	225-2731	225-5773	Putnam, Adam	R	FL12	506 CHOB	225-1252	226-0585
	McKeon, Howard P.	R	CA25	2351 RH0B	225-1956	226-0683	Quinn, Jack	R	NY27	2448 RH0B	225-3306	226-0347
	McNulty, Michael R.	D	NY21	2210 RH0B	225-5076	225-5077	Radanovich, George	R	CA19	438 CHOB	225-4540	225-3402
	Meehan, Martin T.	D	MA05	2229 RH0B	225-3411	226-0771	Rahall, Nick	D	WV03	2307 RH0B	225-3452	225-9061
	Meek, Kendrick	D	FL17	1039 LHOB	225-4506	226-0777	Ramstad, Jim	R	MN03	103 CHOB	225-2871	225-6351
	Meeks, Gregory W.	D	NY06	1710 LHOB	225-3461	226-4169	Rangel, Charles B.	D	NY15	2354 RH0B	225-4365	225-0816
	Menendez, Robert	D	NJ13	2238 RH0B	225-7919	226-0792	Regula, Ralph	R	0H06	2306 RH0B	225-3876	225-3059
	Mica, John L.	R	FL07	2445 RH0B	225-4035	226-0821	Rehberg, Dennis	R	MT01	516 CHOB	225-3211	225-5687
	Michaud, Mike	D	ME02	437 CHOB	225-6306	225-2943	Renzi, Rick	R	AZ01	418 CHOB	225-2315	226-9739
	Millender-McDonald, Juanita	D	CA37	1514 LH0B	225-7924	225-7926	Reyes, Silvestre Reynolds, Thomas M.	D D	TX16 NY26	1527 LHOB 332 CHOB	225-4831 225-5265	225-2016 225-5910
	Miller, Brad	D	NC13	1514 LHOB	225-3032	225-0181	Rodriquez, Ciro D.	D	TX28	1507 LHOB	225-3203	225-1641
	Miller, Candice S.	R	MI10	508 CHOB	225-2106	226-1169	Rogers, Harold	R	KY05	2406 RHOB	225-4601	225-0940
	Miller, Gary G.	R	CA42	1037 LH0B	225-3201	226-6962	Rogers, Mike	R	MI08	133 CHOB	225-4872	225-5820
	Miller, George	D	CA07	2205 RH0B	225-2095	225-5609	Rogers, Mike D.	R	AL03	514 CHOB	225-3261	226-8485
	Miller, Jeff	R	FL01	331 CHOB	225-4136	225-3414	Rohrabacher, Dana	R	CA46	2338 RH0B	225-2415	225-0145
	Mollohan, Alan B.	D	WV01	2302 RH0B	225-4172	225-7564	Ros-Lehtinen, Ileana		FL18	2160 RH0B	225-3931	225-5620
	Moore, Dennis	D	KS03	431 CHOB	225-2865	225-2807	Ross, Mike	D	AR04	314 CHOB	225-3772	225-1314
	Moran, James P.	D	VA08	2239 RHOB	225-4376	225-0017	Rothman, Steven R.		NJ09	1607 LHOB	225-5061	225-5851
	Moran, Jerry	R	KS01	1519 LHOB	225-2715	225-5124	Roybal-Allard, Lucille		CA34	2330 RH0B	225-1766	226-0350
	Murphy, Timothy F. Murtha, John P.	R D	PA18 PA12	226 CHOB	225-2301	225-1844	Royce, Ed	R	CA40	2202 RH0B	225-4111	226-0335
	Musgrave, Marilyn N.		C004	2423 RH0B 1208 LH0B	225-2065 225-4676	225-5709 225-5870	Ruppersberger, C.A. Dutch	D	MD02	1630 LH0B	225-3061	225-3094
	Myrick, Sue	R	NCO9	230 CHOB	225-1976	225-3389	Rush, Bobby L.	D	IL01	2416 RHOB	225-4372	226-0333
	Nadler, Jerrold	D	NY08	2334 RH0B	225-5635	225-6923	Ryan, Paul	R	WI01	1217 LHOB	225-3031	225-3393
	Napolitano, Grace						Ryan, Timothy J.	D	0H17	222 CHOB	225-5261	225-3719
	Flores	D	CA38	1609 LHOB	225-5256	225-0027	Ryun, Jim	R	KS02	2433 RH0B	225-6601	225-7986
	Neal, Richard E.	D	MA02	2133 RH0B	225-5601	225-8112	Sabo, Martin Olav	D	MN05	2336 RH0B	225-4755	
	Nethercutt, George R		WA05	2443 RH0B	225-2006	225-3392	Sanchez, Linda	D	CA39	1007 LH0B	225-6676	226-1012
	Ney, Bob	R	0H18	2438 RH0B	225-6265	225-3394	Sanchez, Loretta	D	CA47	1230 LH0B	225-2965	225-5859
	Northup, Anne Meagher	R	KY03	1004 LH0B	225-5401	225 5776	Sanders, Bernard	I D	VT01	2233 RHOB	225-4115	225-6790
	Norton, Eleanor	K	K105	1004 LHUB	225-5401	225-5776	Sandlin, Max Saxton, Jim	R	TX01 NJ03	324 CHOB 339 CHOB	225-3035 225-4765	225-5866 225-0778
	Holmes	D	DC01	2136 RH0B	225-8050	225-3002	Schakowsky, Janice	D	IL09	515 CHOB	225-2111	226-6890
	Norwood, Charlie	R	GA09	2452 RHOB	225-4101	226-5995	Schiff, Adam	D	CA29	326 CHOB	225-4176	225-5828
	Nunes, Devin	R	CA21	1017 LHOB	225-2523	225-3404	Schrock, Edward L.	R	VA02	322 CHOB	225-4215	225-4218
	Nussle, Jim	R	IA01	303 CHOB	225-2911	225-9129	Scott, David	D	GA13	417 CHOB	225-2939	225-4628
	Oberstar, James L.	D	MN08	2365 RH0B	225-6211	225-0699	Scott, Robert C.	D	VA03	2464 RH0B	225-8351	225-8354
	Obey, David	D	WI07	2314 RH0B	225-3365		Sensenbrenner, Jim	R	WI05	2449 RH0B	225-5101	225-3190
	Olver, John W.	D	MA01	1027 LH0B	225-5335	226-1224	Serrano, José E.	D	NY16	2227 RHOB	225-4361	225-6001
	Ortiz, Solomon P.	D	TX27	2470 RHOB	225-7742	226-1134	Sessions, Pete	R	TX32	1318 LHOB	225-2231	225-5878
	Osborne, Tom	R	NE03	507 CHOB	225-6435	226-1385	Shadegg, John	R	AZ03	306 CHOB	225-3361	225-3462
	Ose, Doug Otter, C.L. "Butch"	R R	CA03 ID01	236 CHOB 1711 LHOB	225-5716 225-6611	226-1298	Shaw, E. Clay Shays, Christopher	R R	FL22 CT04	2408 RH0B	225-3026 225-5541	225-8398
	Owens, Major R.	R D	NY11	2309 RHOB	225-6231	225-3029 226-0112	Sherman, Brad	R D	CA27	1126 LH0B 1030 LH0B	225-5541	225-9629 225-5879
	Oxley, Michael G.	R	0H04	2309 RHOB 2308 RHOB	225-0231		Sherwood, Don	R	PA10	1030 LHOB 1223 LHOB	225-3911	225-5679
	Pallone, Frank	D	NJ06	420 CHOB	225-2670	225-9665	Shimkus, John M.	R	IL19	513 CHOB	225-5731	225-5880
	Pascrell, William J.	D	NJ08	1722 LHOB	225-5751	225-5782	Shuster, Bill	R	PA09	1108 LH0B	225-2431	225-2486
	Pastor, Ed	D	AZ04	2465 RH0B	225-4065	225-1655	Simmons, Rob	R	CT02	215 CHOB	225-2076	225-4977
	Paul, Ron	R	TX14	203 CH0B	225-2831							
1						I						

Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)	Member Name	Party	State Dist.	Room/ Building	Phone (202)	Fax (202)
Simpson, Mike	R	ID02	1339 LHOB	225-5531	225-8216	Towns, Edolphus	D	NY10	2232 RH0B	225-5936	225-1018
Skelton, Ike	D	M004	2206 RH0B	225-2876	225-2695	Turner, Michael	R	0H03	1740 LH0B	225-6465	225-6754
Slaughter, Louise M.	D	NY28	2469 RH0B	225-3615	225-7822	Turner, Jim	D	TX02	330 CHOB	225-2401	225-5955
Smith, Adam	D	WA09	227 CHOB	225-8901	225-5893	Udall, Mark	D	C002	115 CHOB	225-2161	226-7840
Smith, Christopher	R	NJ04	2373 RH0B	225-3765	225-7768	Udall, Tom	D	NM03	1414 LH0B	225-6190	226-1331
Smith, Lamar	R	TX21	2231 RH0B	225-4236	225-8628	Upton, Fred	R	MI06	2161 RH0B	225-3761	225-4986
Smith, Nick	R	MI07	2305 RH0B	225-6276	225-6281	Van Hollen,					
Snyder, Vic	D	AK02	1330 LH0B	225-2506	225-5903	Christopher	D	MD08	1419 LHOB	225-5341	225-0375
Solis, Hilda L.	D	CA32	1725 LHOB	225-5464	225-5467	Velázquez, Nydia M.	D	NY12	2241 RH0B	225-2361	226-0327
Souder, Mark	R	IN03	1227 LHOB	225-4436	225-3479	Visclosky, Peter J.	D	IN01	2313 RHOB	225-2461	225-2493
Spratt, John M.	D	SC05	1401 LH0B	225-5501	225-0464	Vitter, David	R	LA01	414 CHOB	225-3015	225-0739
Stark, Pete	D	CA13	239 CHOB	225-5065	226-3805	Walden, Greg	R	0R02	1404 LH0B	225-6730	225-5774
Stearns, Cliff	R	FL06	2370 RH0B	225-5744	225-3973	Walsh, James T.	R	NY25	2369 RHOB	225-3701	225-4042
Stenholm, Charles W.	D	TX17	2409 RH0B	225-6605	225-2234	Wamp, Zach	R	TN03	2447 RHOB	225-3271	225-3494
Strickland, Ted	D	0H06	336 CHOB	225-5705	225-5907	Waters, Maxine	D	CA35	2344 RH0B	225-2201	225-7854
Stupak, Bart	D	MI01	2352 RH0B	225-4735	225-4744	Watson, Diane E.	D	CA33	125 CHOB	225-7084	225-2422
Sullivan, John	R	0K01	114 CHOB	225-2211	225-9187	Watt, Melvin L.	D	NC12	2236 RHOB	225-1510	225-1512
Sweeney, John E.	R	NY20	416 CHOB	225-5614	225-6234	Waxman, Henry A.	D	CA30	2204 RH0B	225-3976	225-4099
Tancredo, Tom	R	C006	1130 LH0B	225-7882	226-4623	Weiner, Anthony D.	D	NY09	1122 LH0B	225-6616	226-7253
Tanner, John	D	TN08	1226 LH0B	225-4714	225-1765	Weldon, Curt	R	PA07	2466 RH0B	225-2011	225-8137
Tauscher, Ellen O.	D	CA10	1034 LH0B	225-1880	225-5914	Weldon, Dave	R	FL15	2347 RHOB	225-3671	225-3516
Tauzin, W.J. "Billy"	R	LA03	2183 RHOB	225-4031	225-0563	Weller, Jerry	R	IL11	1210 LH0B	225-3635	225-3521
Taylor, Gene	D	MS04	2311 RH0B	225-5772	225-7074	Wexler, Robert	D	FL19	213 CHOB	225-3001	225-5974
Taylor, Charles H.	R	NC11	231 CHOB	225-6401	226-6422	Whitfield, Ed	R	KY01	301 CHOB	225-3115	225-3547
Terry, Lee	R	NE02	1524 LH0B	225-4155	226-5452	Wicker, Roger F.	R	MS01	2455 RH0B	225-4306	225-3549
Thomas, William M.	R	CA22	2208 RH0B	225-2915	225-2908	Wilson, Heather	R	NM01	318 CHOB	225-6316	225-4975
Thompson, Bennie	D	MS02	2432 RH0B	225-5876	225-5898	Wilson, Joe	R	SC02	212 CHOB	225-2452	225-2455
Thompson, Mike	D	CA01	119 CHOB	225-3311	225-4335	Wolf, Frank R.	R	VA10	241 CHOB	225-5136	225-0437
Thornberry, Mac	R	TX13	2457 RH0B	225-3706	225-3486	Woolsey, Lynn C.	D	CA06	2263 RHOB	225-5161	225-5163
Tiahrt, Todd	R	KS04	2441 RH0B	225-6216	225-3489	Wu, David	D	0R01	1023 LH0B	225-0855	225-9497
Tiberi, Patrick J.	R	0H12	113 CHOB	225-5355	226-4523	Wynn, Albert R.	D	MD04	434 CHOB	225-8699	225-8714
Tierney, John F.	D	MA06	120 CHOB	225-8020	225-5915	Young, C.W. Bill	R	FL10	2407 RH0B	225-5961	225-9764
Toomey, Pat	R	PA15	224 CHOB	225-6411	226-0778	Young, Don	R	AL01	2111 RH0B	225-5765	225-0425

